330
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dynamics of Person-to-Person Interactions from Distributed RFID Sensor Networks

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Digital networks, mobile devices, and the possibility of mining the ever-increasing amount of digital traces that we leave behind in our daily activities are changing the way we can approach the study of human and social interactions. Large-scale datasets, however, are mostly available for collective and statistical behaviors, at coarse granularities, while high-resolution data on person-to-person interactions are generally limited to relatively small groups of individuals. Here we present a scalable experimental framework for gathering real-time data resolving face-to-face social interactions with tunable spatial and temporal granularities.

          Methods and Findings

          We use active Radio Frequency Identification (RFID) devices that assess mutual proximity in a distributed fashion by exchanging low-power radio packets. We analyze the dynamics of person-to-person interaction networks obtained in three high-resolution experiments carried out at different orders of magnitude in community size. The data sets exhibit common statistical properties and lack of a characteristic time scale from 20 seconds to several hours. The association between the number of connections and their duration shows an interesting super-linear behavior, which indicates the possibility of defining super-connectors both in the number and intensity of connections.

          Conclusions

          Taking advantage of scalability and resolution, this experimental framework allows the monitoring of social interactions, uncovering similarities in the way individuals interact in different contexts, and identifying patterns of super-connector behavior in the community. These results could impact our understanding of all phenomena driven by face-to-face interactions, such as the spreading of transmissible infectious diseases and information.

          Related collections

          Most cited references6

          • Record: found
          • Abstract: found
          • Article: not found

          Epidemic Spreading in Scale-Free Networks

          The Internet has a very complex connectivity recently modeled by the class of scale-free networks. This feature, which appears to be very efficient for a communications network, favors at the same time the spreading of computer viruses. We analyze real data from computer virus infections and find the average lifetime and persistence of viral strains on the Internet. We define a dynamical model for the spreading of infections on scale-free networks, finding the absence of an epidemic threshold and its associated critical behavior. This new epidemiological framework rationalizes data of computer viruses and could help in the understanding of other spreading phenomena on communication and social networks.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Empirical analysis of an evolving social network.

            Social networks evolve over time, driven by the shared activities and affiliations of their members, by similarity of individuals' attributes, and by the closure of short network cycles. We analyzed a dynamic social network comprising 43,553 students, faculty, and staff at a large university, in which interactions between individuals are inferred from time-stamped e-mail headers recorded over one academic year and are matched with affiliations and attributes. We found that network evolution is dominated by a combination of effects arising from network topology itself and the organizational structure in which the network is embedded. In the absence of global perturbations, average network properties appear to approach an equilibrium state, whereas individual properties are unstable.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Revisiting the foundations of network analysis.

              Network analysis has emerged as a powerful way of studying phenomena as diverse as interpersonal interaction, connections among neurons, and the structure of the Internet. Appropriate use of network analysis depends, however, on choosing the right network representation for the problem at hand.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2010
                15 July 2010
                : 5
                : 7
                : e11596
                Affiliations
                [1 ]Complex Networks and Systems Group, Institute for Scientific Interchange Foundation, Turin, Italy
                [2 ]Centre de Physique Théorique (CNRS UMR 6207), Marseille, France
                [3 ]Laboratoire de Physique de l'ENS Lyon (CNRS UMR 5672), Lyon, France
                [4 ]Center for Complex Networks and Systems Research, School of Informatics and Computing, Indiana University, Bloomington, Indiana, United States of America
                [5 ]Pervasive Technology Institute, Indiana University, Bloomington, Indiana, United States of America
                [6 ]Institute for Scientific Interchange Foundation, Turin, Italy
                University of Southampton, United Kingdom
                Author notes

                Conceived and designed the experiments: CC WVdB AB VC JFP AV. Performed the experiments: CC WVdB AB VC JFP AV. Analyzed the data: CC WVdB AB VC JFP AV. Contributed reagents/materials/analysis tools: CC WVdB AB VC JFP AV. Wrote the paper: CC WVdB AB VC JFP AV.

                Article
                10-PONE-RA-16212R1
                10.1371/journal.pone.0011596
                2904704
                20657651
                1ea69829-4428-4367-b841-6b8b7b5ddf43
                Cattuto et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 10 February 2010
                : 22 June 2010
                Page count
                Pages: 9
                Categories
                Research Article
                Computer Science/Applications
                Computer Science/Information Technology
                Physics/Interdisciplinary Physics

                Uncategorized
                Uncategorized

                Comments

                Comment on this article