127
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Large Fraction of Extragenic RNA Pol II Transcription Sites Overlap Enhancers

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A substantial fraction of extragenic Pol II transcription sites coincides with transcriptional enhancers, which may be relevant for functional annotation of mammalian genomes.

          Abstract

          Mammalian genomes are pervasively transcribed outside mapped protein-coding genes. One class of extragenic transcription products is represented by long non-coding RNAs (lncRNAs), some of which result from Pol_II transcription of bona-fide RNA genes. Whether all lncRNAs described insofar are products of RNA genes, however, is still unclear. Here we have characterized transcription sites located outside protein-coding genes in a highly regulated response, macrophage activation by endotoxin. Using chromatin signatures, we could unambiguously classify extragenic Pol_II binding sites as belonging to either canonical RNA genes or transcribed enhancers. Unexpectedly, 70% of extragenic Pol_II peaks were associated with genomic regions with a canonical chromatin signature of enhancers. Enhancer-associated extragenic transcription was frequently adjacent to inducible inflammatory genes, was regulated in response to endotoxin stimulation, and generated very low abundance transcripts. Moreover, transcribed enhancers were under purifying selection and contained binding sites for inflammatory transcription factors, thus suggesting their functionality. These data demonstrate that a large fraction of extragenic Pol_II transcription sites can be ascribed to cis-regulatory genomic regions. Discrimination between lncRNAs generated by canonical RNA genes and products of transcribed enhancers will provide a framework for experimental approaches to lncRNAs and help complete the annotation of mammalian genomes.

          Author Summary

          Mammalian genomes contain vast intergenic regions that are extensively transcribed and generate various types of short and long non-coding RNAs (ncRNAs). Although in some cases specific functions have been assigned to intergenic transcripts, the functional significance of this transcriptional output remains largely unknown, and the possibility exists that part of this transcription reflects noise generated by random collisions of the transcriptional machinery with the genome to generate meaningless transcription. In this study we used chromatin signatures to characterize extragenic transcription sites targeted by RNA Polymerase II (RNA Pol II) in a highly regulated response—endotoxin activation of macrophages. We found that a significant portion of extragenic transcription sites are associated with the chromatin signature characteristic of enhancers. Consistent with their chromatin signature, we found that these extragenic transcription sites are under purifying selection and contain binding sites for inflammatory transcription factors, as well as for PU.1, a hematopoietic transcription factor that marks enhancers in macrophages. Moreover, much of this extragenic transcription is regulated by stimulation. We also identified hundreds of transcribed regions with a signature of canonical RNA genes. Our data indicate that extragenic transcription sites can be efficiently classified using chromatin signatures, which will be relevant for functional annotation of mammalian genomes.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: not found

          The transcriptional landscape of the mammalian genome.

          This study describes comprehensive polling of transcription start and termination sites and analysis of previously unidentified full-length complementary DNAs derived from the mouse genome. We identify the 5' and 3' boundaries of 181,047 transcripts with extensive variation in transcripts arising from alternative promoter usage, splicing, and polyadenylation. There are 16,247 new mouse protein-coding transcripts, including 5154 encoding previously unidentified proteins. Genomic mapping of the transcriptome reveals transcriptional forests, with overlapping transcription on both strands, separated by deserts in which few transcripts are observed. The data provide a comprehensive platform for the comparative analysis of mammalian transcriptional regulation in differentiation and development.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            RNA maps reveal new RNA classes and a possible function for pervasive transcription.

            Significant fractions of eukaryotic genomes give rise to RNA, much of which is unannotated and has reduced protein-coding potential. The genomic origins and the associations of human nuclear and cytosolic polyadenylated RNAs longer than 200 nucleotides (nt) and whole-cell RNAs less than 200 nt were investigated in this genome-wide study. Subcellular addresses for nucleotides present in detected RNAs were assigned, and their potential processing into short RNAs was investigated. Taken together, these observations suggest a novel role for some unannotated RNAs as primary transcripts for the production of short RNAs. Three potentially functional classes of RNAs have been identified, two of which are syntenically conserved and correlate with the expression state of protein-coding genes. These data support a highly interleaved organization of the human transcriptome.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              JASPAR: an open-access database for eukaryotic transcription factor binding profiles.

              The analysis of regulatory regions in genome sequences is strongly based on the detection of potential transcription factor binding sites. The preferred models for representation of transcription factor binding specificity have been termed position-specific scoring matrices. JASPAR is an open-access database of annotated, high-quality, matrix-based transcription factor binding site profiles for multicellular eukaryotes. The profiles were derived exclusively from sets of nucleotide sequences experimentally demonstrated to bind transcription factors. The database is complemented by a web interface for browsing, searching and subset selection, an online sequence analysis utility and a suite of programming tools for genome-wide and comparative genomic analysis of regulatory regions. JASPAR is available at http://jaspar. cgb.ki.se.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Biol
                plos
                plosbiol
                PLoS Biology
                Public Library of Science (San Francisco, USA )
                1544-9173
                1545-7885
                May 2010
                May 2010
                11 May 2010
                : 8
                : 5
                : e1000384
                Affiliations
                [1 ]Department of Experimental Oncology, European Institute of Oncology (IEO) Campus IFOM-IEO, Milan, Italy
                [2 ]Genomics Laboratory, Wellcome Trust Centre for Human Genetics (WTCHG), University of Oxford, Oxford, United Kingdom
                [3 ]Genome Technology and Biology Group, Genome Institute of Singapore, Singapore
                University of Queensland, Australia
                Author notes

                The author(s) have made the following declarations about their contributions: Conceived and designed the experiments: FDS IB GN. Performed the experiments: FDS FM SG SP BKT. Analyzed the data: FDS IB FM SG SP HM GN. Contributed reagents/materials/analysis tools: JR CLW. Wrote the paper: GN.

                Article
                09-PLBI-RA-4332R3
                10.1371/journal.pbio.1000384
                2867938
                20485488
                1eaea0e8-30df-47f0-840c-7c3ac838bc78
                De Santa et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 7 October 2009
                : 21 April 2010
                Page count
                Pages: 17
                Categories
                Research Article
                Cell Biology/Gene Expression
                Cell Biology/Leukocyte Signaling and Gene Expression
                Genetics and Genomics/Epigenetics
                Immunology/Innate Immunity
                Molecular Biology/Histone Modification

                Life sciences
                Life sciences

                Comments

                Comment on this article