32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Biological Functions of the Novel Collectins CL-L1, CL-K1, and CL-P1

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Collectins are characterized by a collagen-like sequence and a carbohydrate recognition domain and are members of the vertebrate C-type lectin superfamily. Recently, “novel collectins”, different from “classical collectins” consisting of mannan-binding lectin (MBL) and surfactant proteins A and D (SP-A and SP-D), have been found by reverse genetics. These “novel collectins” consist of collectin liver 1 (CL-L1), collectin kidney 1 (CL-K1), and collectin placenta 1 (CL-P1) and are encoded by three separate genes. Experimental findings on human and animal collectins have shown that both novel collectins and classical collectins play an important role in innate immunity. Based on our recent results and those of others, in this paper, we summarize the new biological functions of these novel collectins in embryonic morphogenesis and development.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          The amphioxus genome and the evolution of the chordate karyotype.

          Lancelets ('amphioxus') are the modern survivors of an ancient chordate lineage, with a fossil record dating back to the Cambrian period. Here we describe the structure and gene content of the highly polymorphic approximately 520-megabase genome of the Florida lancelet Branchiostoma floridae, and analyse it in the context of chordate evolution. Whole-genome comparisons illuminate the murky relationships among the three chordate groups (tunicates, lancelets and vertebrates), and allow not only reconstruction of the gene complement of the last common chordate ancestor but also partial reconstruction of its genomic organization, as well as a description of two genome-wide duplications and subsequent reorganizations in the vertebrate lineage. These genome-scale events shaped the vertebrate genome and provided additional genetic variation for exploitation during vertebrate evolution.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A second serine protease associated with mannan-binding lectin that activates complement.

            The complement system comprises a complex array of enzymes and non-enzymatic proteins that is essential for the operation of the innate as well as the adaptive immune defence. The complement system can be activated in three ways: by the classical pathway which is initiated by antibody-antigen complexes, by the alternative pathway initiated by certain structures on microbial surfaces, and by an antibody-independent pathway that is initiated by the binding of mannan-binding lectin (MBL; first described as mannan-binding protein) to carbohydrates. MBL is structurally related to the complement C1 subcomponent, C1q, and seems to activate the complement system through an associated serine protease known as MASP (ref. 4) or p100 (ref. 5), which is similar to C1r and C1s of the classical pathway. MBL binds to specific carbohydrate structures found on the surface of a range of microorganisms, including bacteria, yeasts, parasitic protozoa and viruses, and exhibits antibacterial activity through killing mediated by the terminal, lytic complement components or by promoting phagocytosis. The level of MBL in plasma is genetically determined, and deficiency is associated with frequent infections in childhood, and possibly also in adults (for review, see ref. 6). We have now identified a new MBL-associated serine protease (MASP-2) which shows a striking homology with the previously reported MASP (MASP-1) and the two C1q-associated serine proteases C1r and C1s. Thus complement activation through MBL, like the classical pathway, involves two serine proteases and may antedate the development of the specific immune system of vertebrates.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Structure of the calcium-dependent lectin domain from a rat mannose-binding protein determined by MAD phasing.

              Calcium-dependent (C-type) animal lectins participate in many cell surface recognition events mediated by protein-carbohydrate interactions. The C-type lectin family includes cell adhesion molecules, endocytic receptors, and extracellular matrix proteins. Mammalian mannose-binding proteins are C-type lectins that function in antibody-independent host defense against pathogens. The crystal structure of the carbohydrate-recognition domain of a rat mannose-binding protein, determined as the holmium-substituted complex by multiwavelength anomalous dispersion (MAD) phasing, reveals an unusual fold consisting of two distinct regions, one of which contains extensive nonregular secondary structure stabilized by two holmium ions. The structure explains the conservation of 32 residues in all C-type carbohydrate-recognition domains, suggesting that the fold seen here is common to these domains. The strong anomalous scattering observed at the Ho LIII edge demonstrates that traditional heavy atom complexes will be generally amenable to the MAD phasing method.
                Bookmark

                Author and article information

                Journal
                J Biomed Biotechnol
                J. Biomed. Biotechnol
                JBB
                Journal of Biomedicine and Biotechnology
                Hindawi Publishing Corporation
                1110-7243
                1110-7251
                2012
                11 April 2012
                : 2012
                : 493945
                Affiliations
                1Department of Microbiology and Immunochemistry, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa 078-8510, Japan
                2Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, North 18, West 9. Kita, Sapporo 060-0818, Japan
                Author notes

                Academic Editor: Misao Matsushita

                Article
                10.1155/2012/493945
                3336186
                22570530
                1ebce403-ce58-47fa-89c7-e2506a38c78a
                Copyright © 2012 Katsuki Ohtani et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 31 December 2011
                : 13 February 2012
                : 14 February 2012
                Categories
                Review Article

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article