26
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Drug Design, Development and Therapy (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the design and development of drugs, as well as the clinical outcomes, patient safety, and programs targeted at the effective and safe use of medicines. Sign up for email alerts here.

      88,007 Monthly downloads/views I 4.319 Impact Factor I 6.6 CiteScore I 1.12 Source Normalized Impact per Paper (SNIP) I 0.784 Scimago Journal & Country Rank (SJR)

       

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      HMGB1 siRNA can reduce damage to retinal cells induced by high glucose in vitro and in vivo

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Diabetic retinopathy (DR), one of the most common complications of late-phase diabetes, is associated with many risk factors, among which continuous low-grade inflammation is one of the principal ones. As such, lowering inflammation levels and maintain the viability of human retinal endothelial cells (HRECs) are critical for DR therapy. HMGB1 is a well-known proinflammatory cytokine. However, whether HMGB1 small interfering RNA (siRNA) can protect retina cells under a high-glucose environment from morphological changes and functional abnormalities remain undetermined. We aimed to investigate the effect of HMGB1 siRNA on retinal cells in DR.

          Materials and methods

          A total of 80 adult Wistar rats were randomly divided into four groups (n=20 each): normal control, diabetes mellitus (DM), scrambled (Scr) siRNA, and HMGB1 siRNA. Rats in the DM, Scr siRNA, and siRNA groups were established by intraperitoneal injection of streptozotocin. At 16 weeks after injection, rats in the siRNA and Scr-siRNA groups were intravitreally injected with 2 μL HMGB1 siRNA and 2 μL Scr-siRNA, while rats in the control and DM groups were intravitreally injected with the same dose of sterile saline. At 1 week after injections, we performed the following experiments. Immunohistochemical staining and real-time quantitative polymerase chain reaction were performed to test HMGB1 protein and messenger RNA expression in retinas. We performed TUNEL assays to detect retinal cell apoptosis and electroretinography to detect retinal function. In HRECs treated with high glucose, proliferation, morphology, apoptosis, super-oxide dismutase (SOD), and reactive oxygen species production were detected. Western blot was applied to determine the expressions of HMGB1 and its related protein and apoptosis protein.

          Results

          Intravitreal injection of HMGB1 siRNA reduced protein and messenger RNA expression of HMGB1 (both P<0.05). Intravitreal injection of HMGB1 siRNA reduced apoptosis of retinal cells ( P<0.05), protected morphological changes in the retina, and improved the function of the retina ( P<0.05). In HRECs treated with high glucose, HMGB1 siRNA pretreatment increased cell viability, reduced cell apoptosis, and reduced oxidative damage to cells (all P<0.05). Western blot detection found that HMGB1 siRNA pretreatment can inhibit the expression of cleaved caspase 3 and improve the expression of BCL2 ( P<0.05). HMGB1 and NFκB expression increased in a time-dependent manner in the high-glucose environment and IKKβ and NFκB protein expression decreased significantly after HMGB1 silencing.

          Conclusion

          As a therapeutic target, HMGB1 siRNA can reduce retinal cell damage induced by high glucose in vitro and in vivo and delay DR progress through the HMGB1–IKKβ–NFκB signaling pathway.

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          The HMGB1/RAGE inflammatory pathway promotes pancreatic tumor growth by regulating mitochondrial bioenergetics.

          Tumor cells require increased adenosine triphosphate (ATP) to support anabolism and proliferation. The precise mechanisms regulating this process in tumor cells are unknown. Here, we show that the receptor for advanced glycation endproducts (RAGE) and one of its primary ligands, high-mobility group box 1 (HMGB1), are required for optimal mitochondrial function within tumors. We found that RAGE is present in the mitochondria of cultured tumor cells as well as primary tumors. RAGE and HMGB1 coordinately enhanced tumor cell mitochondrial complex I activity, ATP production, tumor cell proliferation and migration. Lack of RAGE or inhibition of HMGB1 release diminished ATP production and slowed tumor growth in vitro and in vivo. These findings link, for the first time, the HMGB1-RAGE pathway with changes in bioenergetics. Moreover, our observations provide a novel mechanism within the tumor microenvironment by which necrosis and inflammation promote tumor progression.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            High-mobility group box-1 in sterile inflammation.

            High-mobility group box 1 (HMGB1) was originally defined as a ubiquitous nuclear protein, but it was later determined that the protein has different roles both inside and outside of cells. Nuclear HMGB1 regulates chromatin structure and gene transcription, whereas cytosolic HMGB1 is involved in inflammasome activation and autophagy. Extracellular HMGB1 has drawn attention because it can bind to related cell signalling transduction receptors, such as the receptor for advanced glycation end products, Toll-like receptor (TLR)2, TLR4 and TLR9. It also participates in the development and progression of a variety of diseases. HMGB1 is actively secreted by stimulation of the innate immune system, and it is passively released by ischaemia or cell injury. This review focuses on the important role of HMGB1 in the pathogenesis of acute and chronic sterile inflammatory conditions. Strategies that target HMGB1 have been shown to significantly decrease inflammation in several disease models of sterile inflammation, and this may represent a promising clinical approach for treatment of certain conditions associated with sterile inflammation. © 2014 The Association for the Publication of the Journal of Internal Medicine.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Key Role of DAMP in Inflammation, Cancer, and Tissue Repair.

              This review aimed to take stock of the current status of research on damage-associated molecular pattern (DAMP) protein. We discuss the Janus-faced role of DAMP molecules in inflammation, cancer, and tissue repair. The high-mobility group box (HMGB)-1 and adenosine triphosphate proteins are well-known DAMP molecules and have been primarily associated with inflammation. However, as we shall see, recent data have linked these molecules to tissue repair. HMGB1 is associated with cancer-related inflammation. It activates nuclear factor kB, which is involved in cancer regulation via its receptor for advanced glycation end-products (RAGE), Toll-like receptors 2 and 4. Proinflammatory activity and tissue repair may lead to pharmacologic intervention, by blocking DAMP RAGE and Toll like receptor 2 and 4 role in inflammation and by increasing their concentration in tissue repair, respectively.
                Bookmark

                Author and article information

                Journal
                Drug Des Devel Ther
                Drug Des Devel Ther
                Drug Design, Development and Therapy
                Drug Design, Development and Therapy
                Dove Medical Press
                1177-8881
                2017
                15 March 2017
                : 11
                : 783-795
                Affiliations
                Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, China
                Author notes
                Correspondence: Xiaolong Chen, Department of Ophthalmology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping Qu, Shenyang, Liaoning 110004, China, Tel +86 159 4067 7973, Email chenxl@ 123456sj-hospital.org
                Article
                dddt-11-783
                10.2147/DDDT.S129913
                5359008
                28352154
                1ecd7100-a1e4-4b3b-9ba6-98d1957c2f43
                © 2017 Jiang and Chen. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Original Research

                Pharmacology & Pharmaceutical medicine
                diabetic retinopathy,small interfering rna,human retinal endothelial cells,high-mobility group box 1,inhibitor of nuclear factor κb,nuclear factor κb

                Comments

                Comment on this article