+1 Recommend
1 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      HMGB1 siRNA can reduce damage to retinal cells induced by high glucose in vitro and in vivo

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.



          Diabetic retinopathy (DR), one of the most common complications of late-phase diabetes, is associated with many risk factors, among which continuous low-grade inflammation is one of the principal ones. As such, lowering inflammation levels and maintain the viability of human retinal endothelial cells (HRECs) are critical for DR therapy. HMGB1 is a well-known proinflammatory cytokine. However, whether HMGB1 small interfering RNA (siRNA) can protect retina cells under a high-glucose environment from morphological changes and functional abnormalities remain undetermined. We aimed to investigate the effect of HMGB1 siRNA on retinal cells in DR.

          Materials and methods

          A total of 80 adult Wistar rats were randomly divided into four groups (n=20 each): normal control, diabetes mellitus (DM), scrambled (Scr) siRNA, and HMGB1 siRNA. Rats in the DM, Scr siRNA, and siRNA groups were established by intraperitoneal injection of streptozotocin. At 16 weeks after injection, rats in the siRNA and Scr-siRNA groups were intravitreally injected with 2 μL HMGB1 siRNA and 2 μL Scr-siRNA, while rats in the control and DM groups were intravitreally injected with the same dose of sterile saline. At 1 week after injections, we performed the following experiments. Immunohistochemical staining and real-time quantitative polymerase chain reaction were performed to test HMGB1 protein and messenger RNA expression in retinas. We performed TUNEL assays to detect retinal cell apoptosis and electroretinography to detect retinal function. In HRECs treated with high glucose, proliferation, morphology, apoptosis, super-oxide dismutase (SOD), and reactive oxygen species production were detected. Western blot was applied to determine the expressions of HMGB1 and its related protein and apoptosis protein.


          Intravitreal injection of HMGB1 siRNA reduced protein and messenger RNA expression of HMGB1 (both P<0.05). Intravitreal injection of HMGB1 siRNA reduced apoptosis of retinal cells ( P<0.05), protected morphological changes in the retina, and improved the function of the retina ( P<0.05). In HRECs treated with high glucose, HMGB1 siRNA pretreatment increased cell viability, reduced cell apoptosis, and reduced oxidative damage to cells (all P<0.05). Western blot detection found that HMGB1 siRNA pretreatment can inhibit the expression of cleaved caspase 3 and improve the expression of BCL2 ( P<0.05). HMGB1 and NFκB expression increased in a time-dependent manner in the high-glucose environment and IKKβ and NFκB protein expression decreased significantly after HMGB1 silencing.


          As a therapeutic target, HMGB1 siRNA can reduce retinal cell damage induced by high glucose in vitro and in vivo and delay DR progress through the HMGB1–IKKβ–NFκB signaling pathway.

          Related collections

          Most cited references 27

          • Record: found
          • Abstract: found
          • Article: not found

          The HMGB1/RAGE inflammatory pathway promotes pancreatic tumor growth by regulating mitochondrial bioenergetics.

          Tumor cells require increased adenosine triphosphate (ATP) to support anabolism and proliferation. The precise mechanisms regulating this process in tumor cells are unknown. Here, we show that the receptor for advanced glycation endproducts (RAGE) and one of its primary ligands, high-mobility group box 1 (HMGB1), are required for optimal mitochondrial function within tumors. We found that RAGE is present in the mitochondria of cultured tumor cells as well as primary tumors. RAGE and HMGB1 coordinately enhanced tumor cell mitochondrial complex I activity, ATP production, tumor cell proliferation and migration. Lack of RAGE or inhibition of HMGB1 release diminished ATP production and slowed tumor growth in vitro and in vivo. These findings link, for the first time, the HMGB1-RAGE pathway with changes in bioenergetics. Moreover, our observations provide a novel mechanism within the tumor microenvironment by which necrosis and inflammation promote tumor progression.
            • Record: found
            • Abstract: found
            • Article: not found

            High-mobility group box-1 in sterile inflammation.

            High-mobility group box 1 (HMGB1) was originally defined as a ubiquitous nuclear protein, but it was later determined that the protein has different roles both inside and outside of cells. Nuclear HMGB1 regulates chromatin structure and gene transcription, whereas cytosolic HMGB1 is involved in inflammasome activation and autophagy. Extracellular HMGB1 has drawn attention because it can bind to related cell signalling transduction receptors, such as the receptor for advanced glycation end products, Toll-like receptor (TLR)2, TLR4 and TLR9. It also participates in the development and progression of a variety of diseases. HMGB1 is actively secreted by stimulation of the innate immune system, and it is passively released by ischaemia or cell injury. This review focuses on the important role of HMGB1 in the pathogenesis of acute and chronic sterile inflammatory conditions. Strategies that target HMGB1 have been shown to significantly decrease inflammation in several disease models of sterile inflammation, and this may represent a promising clinical approach for treatment of certain conditions associated with sterile inflammation. © 2014 The Association for the Publication of the Journal of Internal Medicine.
              • Record: found
              • Abstract: found
              • Article: not found

              Retinal neuroprotective effects of quercetin in streptozotocin-induced diabetic rats.

              The aim of the present study was to evaluate the effects of Quercetin (Qctn), a plant based flavonol, on retinal oxidative stress, neuroinflammation and apoptosis in streptozotocin-induced diabetic rats. Qctn treatment (25- and 50 mg/kg body weight) was given orally for six months in diabetic rats. Retinal glutathione (GSH) and antioxidant enzymes [superoxide dismutase (SOD) and catalase (CAT)] were estimated using commercially available assays, and inflammatory cytokines levels [tumor necrosis factor-α (TNF-α), Interleukin-1β (IL-1β)] were estimated by ELISA method. Immunofluorescence and western blot studies were performed for nuclear factor kappa B (NF-kB), caspase-3, glial fibrillary acidic protein (GFAP) and aquaporin-4 (AQP4) expressions. Structural changes were evaluated by light microscopy. In the present study, retinal GSH levels and antioxidant enzyme (SOD and CAT) activities were significantly decreased in diabetic group as compared to normal group. However, in Qctn-treated rats, retinal GSH levels were restored close to normal levels and positive modulation of antioxidant enzyme activities was observed. Diabetic retinas showed significantly increased expression of pro-inflammatory cytokines (TNF-α and IL-1β) as compared to that in normal retinas, while Qctn-treated retinas showed significantly lower levels of cytokines as compared to diabetic retinas. Light microscopy showed significantly increased number of ganglion cell death and decreased retinal thickness in diabetic group compared to those in normal retina; however, protective effect of Qctn was seen. Increased apoptosis in diabetic retina is proposed to be mediated by overexpression of NF-kB and caspase-3. However, Qctn showed inhibitory effects on NF-kB and caspase-3 expression. Microglia showed upregulated GFAP expression, and inflammation of Müller cells resulted in edema in their endfeet and around perivascular space in nerve fiber layer in diabetic retina, as observed through AQP4 expression. However, Qctn treatments inhibited diabetes-induced increases in GFAP and AQP4 expression. Based on these findings, it can be concluded that bioflavonoids, such as Qctn can be effective for protection of diabetes induced retinal neurodegeneration and oxidative stress.

                Author and article information

                Drug Des Devel Ther
                Drug Des Devel Ther
                Drug Design, Development and Therapy
                Drug Design, Development and Therapy
                Dove Medical Press
                15 March 2017
                : 11
                : 783-795
                Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, China
                Author notes
                Correspondence: Xiaolong Chen, Department of Ophthalmology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping Qu, Shenyang, Liaoning 110004, China, Tel +86 159 4067 7973, Email chenxl@ 123456sj-hospital.org
                © 2017 Jiang and Chen. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                Original Research


                Comment on this article