14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Molecular analysis of the INCENPs (inner centromere proteins): separate domains are required for association with microtubules during interphase and with the central spindle during anaphase

      research-article
      The Journal of Cell Biology
      The Rockefeller University Press

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          It has recently been proposed that mitotic chromosomes transport certain cytoskeletal proteins to the metaphase plate so that these proteins are able to subsequently participate in the assembly of the anaphase spindle and the cleavage furrow. To understand how such proteins accomplish their dual chromosomal: cytoskeletal role, we have begun a molecular and functional analysis of the inner centromere proteins (INCENPs), founder members of the class of "chromosome passenger proteins". cDNA clones encoding the open reading frames of the two chicken INCENPs were recovered. The predicted proteins, class I INCENP (96,357 D) and class II INCENP (100,931 D) are novel, and differ from each other by the inclusion of a 38-codon insert within the class II coding region. Transient expression of the chicken INCENPs in mammalian cells confirms that the signals and structures required for the transfer of these proteins from chromosomes to cytoskeleton are evolutionarily conserved. Furthermore, these studies reveal that INCENP association with the cytoskeleton is complex. The amino-terminal 42- amino acid residues are required for transfer of the INCENPs from the chromosomes to the mitotic spindle at anaphase, but not for binding of INCENPs to cytoplasmic microtubules. In contrast, an internal 200 amino acid coiled-coil domain was required for association with microtubules, but dispensable for spindle association. These experiments suggest that proteins required for assembly of specialized cytoskeletal structures during mitosis from anaphase onwards might be sequestered in the nucleus throughout interphase to keep them from disrupting the interphase cytoskeleton, and to ensure their correct positioning during mitosis.

          Related collections

          Author and article information

          Journal
          J Cell Biol
          The Journal of Cell Biology
          The Rockefeller University Press
          0021-9525
          1540-8140
          2 October 1993
          : 123
          : 2
          : 373-385
          Article
          94012983
          10.1083/jcb.123.2.373
          2119831
          8408220
          1eda5f48-301e-4144-a4b3-77d026b2d660
          History
          Categories
          Articles

          Cell biology
          Cell biology

          Comments

          Comment on this article