79
views
0
recommends
+1 Recommend
1 collections
    5
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Overexpression of Math1 induces robust production of extra hair cells in postnatal rat inner ears

      ,
      Nature Neuroscience
      Springer Science and Business Media LLC

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          For mammalian cochlear hair cells, fate determination is normally completed by birth. We report here that overexpression of Math1, a mouse homolog of the Drosophila gene atonal, in postnatal rat cochlear explant cultures resulted in extra hair cells. Surprisingly, we found that the source of the ectopic hair cells was columnar epithelial cells located outside the sensory epithelium in the greater epithelial ridge, which normally give rise to inner sulcus cells. Moreover, Math1 expression also facilitated conversion of postnatal utricular supporting cells into hair cells. Thus Math1 was sufficient for the production of hair cells in the ear, and immature postnatal mammalian inner ears retained the competence to generate new hair cells.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          A novel method for real time quantitative RT-PCR.

          A novel approach to quantitative reverse transcriptase polymerase chain reaction (QC RT-PCR) using real time detection and the 5' nuclease assay has been developed. Cystic fibrosis transmembrane transductance regulator (CFTR) target mRNA is reverse transcribed, amplified, detected, and quantitated in real time. A fluorogenic probe was designed to detect the CFTR amplicon. Relative increase in 6-carboxy-fluorescein reporter fluorescent emission is monitored during PCR amplification using an analytical thermal cycler. An internal control template containing the same primer sequences as the CFTR amplicon, but a different internal sequence, has been designed as a control. An internal control probe with a reporter fluorescent dye tetrachloro-6-carboxy-fluorescein was designed to hybridize to the internal control amplicon. The internal control template is placed in each reaction tube and is used for quantitative analysis of the CFTR mRNA. This method provides a convenient and high-throughput format for QC RT-PCR.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Notch signalling pathway mediates hair cell development in mammalian cochlea.

            The mammalian cochlea contains an invariant mosaic of sensory hair cells and non-sensory supporting cells reminiscent of invertebrate structures such as the compound eye in Drosophila melanogaster. The sensory epithelium in the mammalian cochlea (the organ of Corti) contains four rows of mechanosensory hair cells: a single row of inner hair cells and three rows of outer hair cells. Each hair cell is separated from the next by an interceding supporting cell, forming an invariant and alternating mosaic that extends the length of the cochlear duct. Previous results suggest that determination of cell fates in the cochlear mosaic occurs via inhibitory interactions between adjacent progenitor cells (lateral inhibition). Cells populating the cochlear epithelium appear to constitute a developmental equivalence group in which developing hair cells suppress differentiation in their immediate neighbours through lateral inhibition. These interactions may be mediated through the Notch signalling pathway, a molecular mechanism that is involved in the determination of a variety of cell fates. Here we show that genes encoding the receptor protein Notch1 and its ligand, Jagged 2, are expressed in alternating cell types in the developing sensory epithelium. In addition, genetic deletion of Jag2 results in a significant increase in sensory hair cells, presumably as a result of a decrease in Notch activation. These results provide direct evidence for Notch-mediated lateral inhibition in a mammalian system and support a role for Notch in the development of the cochlear mosaic.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Role of transcription factors Brn-3.1 and Brn-3.2 in auditory and visual system development.

              The neurally expressed genes Brn-3.1 and Brn-3.2 (refs 1-6) are mammalian orthologues of the Caenorhabditis elegans unc-86 gene that constitute, with Brn-3.0 (refs 1-3,8,9), the class IV POU-domain transcription factors. Brn-3.1 and Brn-3.2 provide a means of exploring the potentially distinct biological functions of expanded gene families in neural development. The highly related members of the Brn-3 family have similar DNA-binding preferences and overlapping expression patterns in the sensory nervous system, midbrain and hindbrain, suggesting functional redundancy. Here we report that Brn-3.1 and Brn-3.2 critically modulate the terminal differentiation of distinct sensorineural cells in which they exhibit selective spatial and temporal expression patterns. Deletion of the Brn-3.2 gene causes the loss of most retinal ganglion cells, defining distinct ganglion cell populations. Mutation of Brn-3.1 results in complete deafness, owing to a failure of hair cells to appear in the inner ear, with subsequent loss of cochlear and vestibular ganglia.
                Bookmark

                Author and article information

                Journal
                Nature Neuroscience
                Nat Neurosci
                Springer Science and Business Media LLC
                1097-6256
                1546-1726
                June 2000
                June 2000
                : 3
                : 6
                : 580-586
                Article
                10.1038/75753
                10816314
                1ee049f3-1ddf-408f-beeb-773ab37c7333
                © 2000

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article