5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dynamic self-assembly of microscale rotors and swimmers

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Biological systems often involve the self-assembly of basic components into complex and function- ing structures. Artificial systems that mimic such processes can provide a well-controlled setting to explore the principles involved and also synthesize useful micromachines. Our experiments show that immotile, but active, components self-assemble into two types of structure that exhibit the fundamental forms of motility: translation and rotation. Specifically, micron-scale metallic rods are designed to induce extensile surface flows in the presence of a chemical fuel; these rods interact with each other and pair up to form either a swimmer or a rotor. Such pairs can transition reversibly be- tween these two configurations, leading to kinetics reminiscent of bacterial run-and-tumble motion.

          Related collections

          Most cited references2

          • Record: found
          • Abstract: found
          • Article: not found

          Directed self-assembly of a colloidal kagome lattice.

          A challenging goal in materials chemistry and physics is spontaneously to form intended superstructures from designed building blocks. In fields such as crystal engineering and the design of porous materials, this typically involves building blocks of organic molecules, sometimes operating together with metallic ions or clusters. The translation of such ideas to nanoparticles and colloidal-sized building blocks would potentially open doors to new materials and new properties, but the pathways to achieve this goal are still undetermined. Here we show how colloidal spheres can be induced to self-assemble into a complex predetermined colloidal crystal-in this case a colloidal kagome lattice-through decoration of their surfaces with a simple pattern of hydrophobic domains. The building blocks are simple micrometre-sized spheres with interactions (electrostatic repulsion in the middle, hydrophobic attraction at the poles, which we call 'triblock Janus') that are also simple, but the self-assembly of the spheres into an open kagome structure contrasts with previously known close-packed periodic arrangements of spheres. This open network is of interest for several theoretical reasons. With a view to possible enhanced functionality, the resulting lattice structure possesses two families of pores, one that is hydrophobic on the rims of the pores and another that is hydrophilic. This strategy of 'convergent' self-assembly from easily fabricated colloidal building blocks encodes the target supracolloidal architecture, not in localized attractive spots but instead in large redundantly attractive regions, and can be extended to form other supracolloidal networks.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Notices of Books Received

              Bookmark

              Author and article information

              Journal
              2015-09-21
              2015-12-01
              Article
              10.1039/C5SM03127C
              1509.06330
              1effaa14-41f7-4620-bff7-cc44f5ef0559

              http://arxiv.org/licenses/nonexclusive-distrib/1.0/

              History
              Custom metadata
              5 pages, 5 figures
              cond-mat.soft

              Condensed matter
              Condensed matter

              Comments

              Comment on this article