3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Neural Correlates of Syntax and Proto-Syntax: Evolutionary Dimension

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The present fMRI study tested predictions of the evolution-of-syntax framework which analyzes certain structures as remnants (“fossils”) of a non-hierarchical (non-recursive) proto-syntactic stage in the evolution of language ( Progovac, 2015, 2016). We hypothesized that processing of these structures, in comparison to more modern hierarchical structures, will show less activation in the brain regions that are part of the syntactic network, including Broca’s area (BA 44 and 45) and the basal ganglia, i.e., the network bolstered in the line of descent of humans through genetic mutations that contributed to present-day dense neuronal connectivity among these regions. Fourteen healthy native English-speaking adults viewed written stimuli consisting of: (1) full sentences (FullS; e.g., The case is closed); (2) Small Clauses (SC; e.g., Case closed); (3) Complex hierarchical compounds (e.g., joy-killer); and (4) Simple flat compounds (e.g., kill-joy). SC (compared to FullS) resulted in reduced activation in the left BA 44 and right basal ganglia. Simple (relative to complex) compounds resulted in increased activation in the inferior temporal gyrus and the fusiform gyrus (BA 37/19), areas implicated in visual and semantic processing. We discuss our findings in the context of current theories regarding the co-evolution of language and the brain.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: not found

          A forkhead-domain gene is mutated in a severe speech and language disorder.

          Individuals affected with developmental disorders of speech and language have substantial difficulty acquiring expressive and/or receptive language in the absence of any profound sensory or neurological impairment and despite adequate intelligence and opportunity. Although studies of twins consistently indicate that a significant genetic component is involved, most families segregating speech and language deficits show complex patterns of inheritance, and a gene that predisposes individuals to such disorders has not been identified. We have studied a unique three-generation pedigree, KE, in which a severe speech and language disorder is transmitted as an autosomal-dominant monogenic trait. Our previous work mapped the locus responsible, SPCH1, to a 5.6-cM interval of region 7q31 on chromosome 7 (ref. 5). We also identified an unrelated individual, CS, in whom speech and language impairment is associated with a chromosomal translocation involving the SPCH1 interval. Here we show that the gene FOXP2, which encodes a putative transcription factor containing a polyglutamine tract and a forkhead DNA-binding domain, is directly disrupted by the translocation breakpoint in CS. In addition, we identify a point mutation in affected members of the KE family that alters an invariant amino-acid residue in the forkhead domain. Our findings suggest that FOXP2 is involved in the developmental process that culminates in speech and language.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Functional MRI of language: new approaches to understanding the cortical organization of semantic processing.

            Until recently, our understanding of how language is organized in the brain depended on analysis of behavioral deficits in patients with fortuitously placed lesions. The availability of functional magnetic resonance imaging (fMRI) for in vivo analysis of the normal brain has revolutionized the study of language. This review discusses three lines of fMRI research into how the semantic system is organized in the adult brain. These are (a) the role of the left inferior frontal lobe in semantic processing and dissociations from other frontal lobe language functions, (b) the organization of categories of objects and concepts in the temporal lobe, and (c) the role of the right hemisphere in comprehending contextual and figurative meaning. Together, these lines of research broaden our understanding of how the brain stores, retrieves, and makes sense of semantic information, and they challenge some commonly held notions of functional modularity in the language system.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cortical representation of the constituent structure of sentences.

              Linguistic analyses suggest that sentences are not mere strings of words but possess a hierarchical structure with constituents nested inside each other. We used functional magnetic resonance imaging (fMRI) to search for the cerebral mechanisms of this theoretical construct. We hypothesized that the neural assembly that encodes a constituent grows with its size, which can be approximately indexed by the number of words it encompasses. We therefore searched for brain regions where activation increased parametrically with the size of linguistic constituents, in response to a visual stream always comprising 12 written words or pseudowords. The results isolated a network of left-hemispheric regions that could be dissociated into two major subsets. Inferior frontal and posterior temporal regions showed constituent size effects regardless of whether actual content words were present or were replaced by pseudowords (jabberwocky stimuli). This observation suggests that these areas operate autonomously of other language areas and can extract abstract syntactic frames based on function words and morphological information alone. On the other hand, regions in the temporal pole, anterior superior temporal sulcus and temporo-parietal junction showed constituent size effect only in the presence of lexico-semantic information, suggesting that they may encode semantic constituents. In several inferior frontal and superior temporal regions, activation was delayed in response to the largest constituent structures, suggesting that nested linguistic structures take increasingly longer time to be computed and that these delays can be measured with fMRI.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Psychol
                Front Psychol
                Front. Psychol.
                Frontiers in Psychology
                Frontiers Media S.A.
                1664-1078
                14 December 2018
                2018
                : 9
                : 2415
                Affiliations
                [1] 1Linguistics Program, Wayne State University , Detroit, MI, United States
                [2] 2Department of English, Wayne State University , Detroit, MI, United States
                [3] 3Lifespan Cognitive Neuroscience Program, Institute of Gerontology, Wayne State University , Detroit, MI, United States
                [4] 4Department of Psychology, Wayne State University , Detroit, MI, United States
                Author notes

                Edited by: Árpád Csathó, University of Pécs, Hungary

                Reviewed by: Lei Chang, University of Macau, China; Alfredo Ardila, Florida International University, United States

                *Correspondence: Ljiljana Progovac, progovac@ 123456wayne.edu

                This article was submitted to Evolutionary Psychology, a section of the journal Frontiers in Psychology

                Article
                10.3389/fpsyg.2018.02415
                6302005
                30618908
                1f05183c-385d-4f2c-a4c5-00692096fadb
                Copyright © 2018 Progovac, Rakhlin, Angell, Liddane, Tang and Ofen.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 26 September 2018
                : 16 November 2018
                Page count
                Figures: 4, Tables: 2, Equations: 0, References: 92, Pages: 16, Words: 0
                Categories
                Psychology
                Original Research

                Clinical Psychology & Psychiatry
                syntactic processing,evolution of syntax,proto-syntactic “fossils”,functional mri,broca’s area,basal ganglia

                Comments

                Comment on this article