53
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Epistatic Module Detection for Case-Control Studies: A Bayesian Model with a Gibbs Sampling Strategy

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The detection of epistatic interactive effects of multiple genetic variants on the susceptibility of human complex diseases is a great challenge in genome-wide association studies (GWAS). Although methods have been proposed to identify such interactions, the lack of an explicit definition of epistatic effects, together with computational difficulties, makes the development of new methods indispensable. In this paper, we introduce epistatic modules to describe epistatic interactive effects of multiple loci on diseases. On the basis of this notion, we put forward a Bayesian marker partition model to explain observed case-control data, and we develop a Gibbs sampling strategy to facilitate the detection of epistatic modules. Comparisons of the proposed approach with three existing methods on seven simulated disease models demonstrate the superior performance of our approach. When applied to a genome-wide case-control data set for Age-related Macular Degeneration (AMD), the proposed approach successfully identifies two known susceptible loci and suggests that a combination of two other loci—one in the gene SGCD and the other in SCAPER—is associated with the disease. Further functional analysis supports the speculation that the interaction of these two genetic variants may be responsible for the susceptibility of AMD. When applied to a genome-wide case-control data set for Parkinson's disease, the proposed method identifies seven suspicious loci that may contribute independently to the disease.

          Author Summary

          Although genome-wide association studies (GWAS) have been quite popular due to recent advances in low-cost genotyping techniques, most of the reported studies only analyze single-locus effects because traditional multi-locus methods are not computationally practical in the detection of epistatic interactive effects of multiple loci. Here, on the basis of a rigorous definition of epistatic modules that describe interactive effects of multiple loci, we take advantage of a Bayesian model with a properly designed Gibbs sampling strategy to facilitate the detection of such modules. We confirm via extensive simulation studies that the proposed method, named epiMODE, is not only feasible in detecting multi-locus effects but also more powerful than three representative methods on seven disease models. We apply the proposed method to an Age-related Macular Degeneration (AMD) data and discover that a combination of two loci—one in the gene SGCD and the other in SCAPER—might be associated with AMD. Considering its advantages, we suggest that the proposed method be applied to more GWAS data for the detection of multi-locus interactive effects.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: not found
          • Article: not found

          The future of genetic studies of complex human diseases.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A genome-wide association study of global gene expression.

            We have created a global map of the effects of polymorphism on gene expression in 400 children from families recruited through a proband with asthma. We genotyped 408,273 SNPs and identified expression quantitative trait loci from measurements of 54,675 transcripts representing 20,599 genes in Epstein-Barr virus-transformed lymphoblastoid cell lines. We found that 15,084 transcripts (28%) representing 6,660 genes had narrow-sense heritabilities (H2) > 0.3. We executed genome-wide association scans for these traits and found peak lod scores between 3.68 and 59.1. The most highly heritable traits were markedly enriched in Gene Ontology descriptors for response to unfolded protein (chaperonins and heat shock proteins), regulation of progression through the cell cycle, RNA processing, DNA repair, immune responses and apoptosis. SNPs that regulate expression of these genes are candidates in the study of degenerative diseases, malignancy, infection and inflammation. We have created a downloadable database to facilitate use of our findings in the mapping of complex disease loci.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Repeat instability: mechanisms of dynamic mutations.

              Disease-causing repeat instability is an important and unique form of mutation that is linked to more than 40 neurological, neurodegenerative and neuromuscular disorders. DNA repeat expansion mutations are dynamic and ongoing within tissues and across generations. The patterns of inherited and tissue-specific instability are determined by both gene-specific cis-elements and trans-acting DNA metabolic proteins. Repeat instability probably involves the formation of unusual DNA structures during DNA replication, repair and recombination. Experimental advances towards explaining the mechanisms of repeat instability have broadened our understanding of this mutational process. They have revealed surprising ways in which metabolic pathways can drive or protect from repeat instability.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                May 2009
                May 2009
                1 May 2009
                : 5
                : 5
                : e1000464
                Affiliations
                [1 ]MOE Key Laboratory of Bioinformatics and Bioinformatics Division, TNLIST and Department of Automation, Tsinghua University, Beijing, China
                University of California San Diego and The Scripps Research Institute, United States of America
                Author notes

                Conceived and designed the experiments: WT RJ YL. Performed the experiments: WT. Analyzed the data: WT RJ. Contributed reagents/materials/analysis tools: XW. Wrote the paper: WT XW RJ.

                Article
                08-PLGE-RA-1380R2
                10.1371/journal.pgen.1000464
                2669883
                19412524
                1f0dd7a6-79f8-4542-ae53-88e6e1c676a6
                Tang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 17 October 2008
                : 30 March 2009
                Page count
                Pages: 18
                Categories
                Research Article
                Computational Biology/Population Genetics
                Genetics and Genomics/Complex Traits
                Genetics and Genomics/Disease Models
                Genetics and Genomics/Genetics of Disease
                Genetics and Genomics/Population Genetics
                Mathematics/Statistics

                Genetics
                Genetics

                Comments

                Comment on this article