27
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Modeling Zika Virus Congenital Eye Disease: Differential Susceptibility of Fetal Retinal Progenitor Cells and iPSC-Derived Retinal Stem Cells to Zika Virus Infection

      Preprint

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Zika virus (ZIKV) causes microcephaly and congenital eye disease that is characterized by macular pigment mottling, macular atrophy, and loss of foveal reflex. The cell and molecular basis of congenital ZIKV infection are not well understood. Here, we utilized a biologically relevant cell-based system on human fetal retinal pigment epithelial cells (FRPE) and iPSC-derived retinal stem cells (iRSCs) to model ZIKV-ocular cell injury processes. FRPEs were highly susceptible to ZIKV, resulting in apoptosis and decreased viability, whereas iRSCs showed reduced susceptibility. Transcriptomics and proteomics analyses of infected FRPE cells revealed the activation of innate immune and inflammatory response genes, and dysregulation of cell survival pathways, mitochondrial transmembrane potential, phagocytosis, and particle internalization. Nucleoside analogue drug treatment inhibited ZIKV replication and prevented apoptosis. In conclusion, ZIKV affects ocular cells of different developmental stages resulting in cellular injury and death, further providing molecular insight into the pathogenesis of congenital eye disease.

          Related collections

          Author and article information

          Journal
          bioRxiv
          April 18 2017
          Article
          10.1101/128405
          1f0ff4f2-b5da-4cb3-83f2-72f42a221f11
          © 2017
          History

          Microbiology & Virology
          Microbiology & Virology

          Comments

          Comment on this article