14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Striated muscle function, regeneration, and repair

      , ,

      Cellular and Molecular Life Sciences

      Springer Nature

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="P2">As the only striated muscle tissues in the body, skeletal and cardiac muscle share numerous structural and functional characteristics, while exhibiting vastly different size and regenerative potential. Healthy skeletal muscle harbors a robust regenerative response that becomes inadequate after large muscle loss or in degenerative pathologies and aging. In contrast, the mammalian heart loses its regenerative capacity shortly after birth, leaving it susceptible to permanent damage by acute injury or chronic disease. In this review, we compare and contrast the physiology and regenerative potential of native skeletal and cardiac muscles, mechanisms underlying striated muscle dysfunction, and bioengineering strategies to treat muscle disorders. We focus on different sources for cellular therapy, biomaterials to augment the endogenous regenerative response, and progress in engineering and application of mature striated muscle tissues <i>in vitro</i> and <i>in vivo</i>. Finally, we discuss the challenges and perspectives in translating muscle bioengineering strategies to clinical practice. </p>

          Related collections

          Most cited references 212

          • Record: found
          • Abstract: not found
          • Article: not found

          Left Ventricular Remodeling After Myocardial Infarction: Pathophysiology and Therapy

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Isolation and expansion of adult cardiac stem cells from human and murine heart.

            Cardiac myocytes have been traditionally regarded as terminally differentiated cells that adapt to increased work and compensate for disease exclusively through hypertrophy. However, in the past few years, compelling evidence has accumulated suggesting that the heart has regenerative potential. Recent studies have even surmised the existence of resident cardiac stem cells, endothelial cells generating cardiomyocytes by cell contact or extracardiac progenitors for cardiomyocytes, but these findings are still controversial. We describe the isolation of undifferentiated cells that grow as self-adherent clusters (that we have termed "cardiospheres") from subcultures of postnatal atrial or ventricular human biopsy specimens and from murine hearts. These cells are clonogenic, express stem and endothelial progenitor cell antigens/markers, and appear to have the properties of adult cardiac stem cells. They are capable of long-term self-renewal and can differentiate in vitro and after ectopic (dorsal subcutaneous connective tissue) or orthotopic (myocardial infarction) transplantation in SCID beige mouse to yield the major specialized cell types of the heart: myocytes (ie, cells demonstrating contractile activity and/or showing cardiomyocyte markers) and vascular cells (ie, cells with endothelial or smooth muscle markers).
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Heart failure.

                Bookmark

                Author and article information

                Journal
                Cellular and Molecular Life Sciences
                Cell. Mol. Life Sci.
                Springer Nature
                1420-682X
                1420-9071
                November 2016
                June 6 2016
                November 2016
                : 73
                : 22
                : 4175-4202
                Article
                10.1007/s00018-016-2285-z
                5056123
                27271751
                © 2016

                Comments

                Comment on this article