5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      In vivo dissolution behavior of various RF magnetron-sputtered Ca-P coatings on roughened titanium implants

      Biomaterials
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          RF magnetron sputter deposition was used to produce 0.1, 1.0 and 4.0 microm thick Ca-P coatings on TiO(2)-blasted titanium discs. Half of the as-sputtered coated specimens were subjected to an additional infrared heat treatment for 30s at 425-475 degrees C. X-ray diffraction demonstrated that infrared radiation changed the amorphous 4 microm sputtered coatings into an amorphous-crystalline structure, while the amorphous 0.1 and 1 microm changed in a crystalline apatite structure with the presents of tetracalciumphosphate as a second phase. Scanning electron microscopically examination of the sputtered coatings revealed that annealing of the 4 microm thick coatings resulted in the appearance of small cracks. Subsequently, the discs were implanted subcutaneous into the back of rabbits. After 1, 4, 8 and 12 weeks of implantation, the implants were retrieved and prepared for histological and physicochemical evaluation. Histological evaluation revealed that the tissue response to all coated implants was very uniform. A very thin connective tissue capsule surrounded all implants. The capsule was usually free of inflammatory cells. At the interface, there was a close contact between the capsule and implant surface and no inflammatory cells were seen. Physicochemical evaluation showed that the 0.1 and 1 microm thick amorphous coatings had disappeared within 1 week of implantation. On the other hand, the 4 microm thick amorphous phase disappeared during the implantation periods, which was followed by the precipitation of a crystalline carbonate apatite. Further, at all implantation periods the heat-treated 1 and 4 microm thick coatings could be detected. Occasionally, a granular precipitate was deposited on the heat-treated 4 microm thick coating. Fourier transform infrared spectroscopy showed the formation of carbonate apatite (CO(3)-AP) on the 4 microm thick amorphous coating and on the heat-treated specimens. On basis of our findings, we conclude that 1 microm thick heat-treated Ca-P sputter coating on roughened titanium implants appear to be of sufficient thickness to show bioactive properties, under in vivo conditions.

          Related collections

          Author and article information

          Journal
          Biomaterials
          Biomaterials
          Elsevier BV
          01429612
          July 2003
          July 2003
          : 24
          : 15
          : 2623-2629
          Article
          10.1016/S0142-9612(03)00067-X
          12726716
          1f24424b-b6c2-4c42-868c-535e933c0a62
          © 2003

          https://www.elsevier.com/tdm/userlicense/1.0/

          History

          Comments

          Comment on this article