14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Rotigotine protects against oxidized low-density lipoprotein(ox-LDL)-induced damages in human umbilical vein endothelial cells(HUVECs)

      research-article
      , , ,
      Bioengineered
      Taylor & Francis
      Cardiovascular diseases, Rotigotine, ox-LDL, HUVECs, NF-κB

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Rotigotine is a non-ergoline dopamine agonist that has been licensed for the treatment of Parkinson’s disease. Cardiovascular diseases are the world’s leading cause of death. Ox-LDL- induced endothelial damages are involved in the initiation and progression of cardiovascular diseases. In this study, we assessed the beneficial properties of Rotigotine on ox-LDL-induced insults to HUVECs to highlight its potential use in the treatment of cardiovascular diseases. Our findings show that Rotigotine suppresses the expressions of low-density lipoprotein receptor (LDL-R), proprotein convertase subtilisin/kexin type 9 (PCSK-9), and sterol regulatory element-binding protein (SREBP-2). It also inhibits ox-LDL-induced cholesterol accumulation in endothelial cells (ECs), improves U937 monocytes adhesion, and decreases the representation of NADPH oxidase (NOX-4) and generation of reactive oxygen species (ROS) in endothelial cells (ECs). Furthermore, Rotigotine inhibited the expressions of both vascular cellular adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) in HUVECs and had anti-inflammatory efficacy in ox-LDL-induced cells by inhibiting the expressions of pro-inflammatory cytokines. Notably, Rotigotine inhibits the activation of nuclear factor-kappaB (NF-κB) by preventing nuclear translocation of NF-κB p65 and reducing the luciferase activity of NF-κB reporter. We, therefore, conclude that these effects of Rotigotine on HUVECs suggest that it may play a therapeutic role in cardiovascular diseases.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis.

          Dysfunction of the endothelial lining of lesion-prone areas of the arterial vasculature is an important contributor to the pathobiology of atherosclerotic cardiovascular disease. Endothelial cell dysfunction, in its broadest sense, encompasses a constellation of various nonadaptive alterations in functional phenotype, which have important implications for the regulation of hemostasis and thrombosis, local vascular tone and redox balance, and the orchestration of acute and chronic inflammatory reactions within the arterial wall. In this review, we trace the evolution of the concept of endothelial cell dysfunction, focusing on recent insights into the cellular and molecular mechanisms that underlie its pivotal roles in atherosclerotic lesion initiation and progression; explore its relationship to classic, as well as more recently defined, clinical risk factors for atherosclerotic cardiovascular disease; consider current approaches to the clinical assessment of endothelial cell dysfunction; and outline some promising new directions for its early detection and treatment.
            • Record: found
            • Abstract: found
            • Article: not found

            Inflammation and atherosclerosis.

            Atherosclerosis, formerly considered a bland lipid storage disease, actually involves an ongoing inflammatory response. Recent advances in basic science have established a fundamental role for inflammation in mediating all stages of this disease from initiation through progression and, ultimately, the thrombotic complications of atherosclerosis. These new findings provide important links between risk factors and the mechanisms of atherogenesis. Clinical studies have shown that this emerging biology of inflammation in atherosclerosis applies directly to human patients. Elevation in markers of inflammation predicts outcomes of patients with acute coronary syndromes, independently of myocardial damage. In addition, low-grade chronic inflammation, as indicated by levels of the inflammatory marker C-reactive protein, prospectively defines risk of atherosclerotic complications, thus adding to prognostic information provided by traditional risk factors. Moreover, certain treatments that reduce coronary risk also limit inflammation. In the case of lipid lowering with statins, this anti-inflammatory effect does not appear to correlate with reduction in low-density lipoprotein levels. These new insights into inflammation in atherosclerosis not only increase our understanding of this disease, but also have practical clinical applications in risk stratification and targeting of therapy for this scourge of growing worldwide importance.
              • Record: found
              • Abstract: found
              • Article: not found

              Identification of ROS using oxidized DCFDA and flow-cytometry.

              Cells constantly generate reactive oxygen species (ROS) during aerobic metabolism. The ROS generation plays an important protective and functional role in the immune system. The cell is armed with a powerful antioxidant defense system to combat excessive production of ROS. Oxidative stress occurs in cells when the generation of ROS overwhelms the cells' natural antioxidant defenses. ROS and the oxidative damage are thought to play an important role in many human diseases including cancer, atherosclerosis, other neurodegenerative diseases and diabetes. Thus, establishing their precise role requires the ability to measure ROS accurately and the oxidative damage that they cause. There are many methods for measuring free radical production in cells. The most straightforward techniques use cell permeable fluorescent and chemiluminescent probes. 2'-7'-Dichlorodihydrofluorescein diacetate (DCFH-DA) is one of the most widely used techniques for directly measuring the redox state of a cell. It has several advantages over other techniques developed. It is very easy to use, extremely sensitive to changes in the redox state of a cell, inexpensive and can be used to follow changes in ROS over time.

                Author and article information

                Journal
                Bioengineered
                Bioengineered
                Bioengineered
                Taylor & Francis
                2165-5979
                2165-5987
                3 December 2021
                2021
                3 December 2021
                : 12
                : 2
                : 10568-10579
                Affiliations
                [0001]Department of Cardiovascular Surgery, West China Hospital of Sichuan University; , Chengdu, China
                Author notes
                CONTACT Ge Cao ge_cao326@ 123456126.com Department of Cardiovascular Surgery, West China Hospital of Sichuan University; , No. 37 Guoxue Lane, Wuhou District, Chengdu, Sichuan Province 610041, China
                Author information
                https://orcid.org/0000-0003-3766-8170
                Article
                2000224
                10.1080/21655979.2021.2000224
                8810014
                34860135
                1f2d2734-ee32-4461-a5c0-26bfa76eea5b
                © 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                Page count
                Figures: 8, References: 51, Pages: 12
                Categories
                Research Article
                Research Paper

                Biomedical engineering
                cardiovascular diseases,rotigotine,ox-ldl,huvecs,nf-κb
                Biomedical engineering
                cardiovascular diseases, rotigotine, ox-ldl, huvecs, nf-κb

                Comments

                Comment on this article

                Related Documents Log