21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      One-step genome editing of elite crop germplasm during haploid induction

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Genome editing using CRISPR-Cas9 works efficiently in plant cells1, but delivery of genome-editing machinery into the vast majority of crop varieties is not possible using established methods2. We co-opted the aberrant reproductive process of haploid induction (HI)3-6 to induce edits in nascent seeds of diverse monocot and dicot species. Our method, named HI-Edit, enables direct genomic modification of commercial crop varieties. HI-Edit was tested in field and sweet corn using a native haploid-inducer line4 and extended to dicots using an engineered CENH3 HI system7. We also recovered edited wheat embryos using Cas9 delivered by maize pollen. Our data indicate that a transient hybrid state precedes uniparental chromosome elimination in maize HI. Edited haploid plants lack both the haploid-inducer parental DNA and the editing machinery. Therefore, edited plants could be used in trait testing and directly integrated into commercial variety development.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase.

          Grain weight is one of the most important components of grain yield and is controlled by quantitative trait loci (QTLs) derived from natural variations in crops. However, the molecular roles of QTLs in the regulation of grain weight have not been fully elucidated. Here, we report the cloning and characterization of GW2, a new QTL that controls rice grain width and weight. Our data show that GW2 encodes a previously unknown RING-type protein with E3 ubiquitin ligase activity, which is known to function in the degradation by the ubiquitin-proteasome pathway. Loss of GW2 function increased cell numbers, resulting in a larger (wider) spikelet hull, and it accelerated the grain milk filling rate, resulting in enhanced grain width, weight and yield. Our results suggest that GW2 negatively regulates cell division by targeting its substrate(s) to proteasomes for regulated proteolysis. The functional characterization of GW2 provides insight into the mechanism of seed development and is a potential tool for improving grain yield in crops.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Haploid plants produced by centromere-mediated genome elimination.

            Production of haploid plants that inherit chromosomes from only one parent can greatly accelerate plant breeding. Haploids generated from a heterozygous individual and converted to diploid create instant homozygous lines, bypassing generations of inbreeding. Two methods are generally used to produce haploids. First, cultured gametophyte cells may be regenerated into haploid plants, but many species and genotypes are recalcitrant to this process. Second, haploids can be induced from rare interspecific crosses, in which one parental genome is eliminated after fertilization. The molecular basis for genome elimination is not understood, but one theory posits that centromeres from the two parent species interact unequally with the mitotic spindle, causing selective chromosome loss. Here we show that haploid Arabidopsis thaliana plants can be easily generated through seeds by manipulating a single centromere protein, the centromere-specific histone CENH3 (called CENP-A in human). When cenh3 null mutants expressing altered CENH3 proteins are crossed to wild type, chromosomes from the mutant are eliminated, producing haploid progeny. Haploids are spontaneously converted into fertile diploids through meiotic non-reduction, allowing their genotype to be perpetuated. Maternal and paternal haploids can be generated through reciprocal crosses. We have also exploited centromere-mediated genome elimination to convert a natural tetraploid Arabidopsis into a diploid, reducing its ploidy to simplify breeding. As CENH3 is universal in eukaryotes, our method may be extended to produce haploids in any plant species.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              MATRILINEAL, a sperm-specific phospholipase, triggers maize haploid induction

              Sexual reproduction in flowering plants involves double fertilization, the union of two sperm from pollen with two sex cells in the female embryo sac. Modern plant breeders increasingly seek to circumvent this process to produce doubled haploid individuals, which derive from the chromosome-doubled cells of the haploid gametophyte. Doubled haploid production fixes recombinant haploid genomes in inbred lines, shaving years off the breeding process. Costly, genotype-dependent tissue culture methods are used in many crops, while seed-based in vivo doubled haploid systems are rare in nature and difficult to manage in breeding programmes. The multi-billion-dollar maize hybrid seed business, however, is supported by industrial doubled haploid pipelines using intraspecific crosses to in vivo haploid inducer males derived from Stock 6, first reported in 1959 (ref. 5), followed by colchicine treatment. Despite decades of use, the mode of action remains controversial. Here we establish, through fine mapping, genome sequencing, genetic complementation, and gene editing, that haploid induction in maize (Zea mays) is triggered by a frame-shift mutation in MATRILINEAL (MTL), a pollen-specific phospholipase, and that novel edits in MTL lead to a 6.7% haploid induction rate (the percentage of haploid progeny versus total progeny). Wild-type MTL protein localizes exclusively to sperm cytoplasm, and pollen RNA-sequence profiling identifies a suite of pollen-specific genes overexpressed during haploid induction, some of which may mediate the formation of haploid seed. These findings highlight the importance of male gamete cytoplasmic components to reproductive success and male genome transmittance. Given the conservation of MTL in the cereals, this discovery may enable development of in vivo haploid induction systems to accelerate breeding in crop plants.
                Bookmark

                Author and article information

                Journal
                Nature Biotechnology
                Nat Biotechnol
                Springer Nature
                1087-0156
                1546-1696
                March 2019
                March 4 2019
                March 2019
                : 37
                : 3
                : 287-292
                Article
                10.1038/s41587-019-0038-x
                30833776
                1f32d162-5ae0-4d4b-bfa0-7eed3f2f1588
                © 2019

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article