1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Phosphorylation of osteopontin is required for inhibition of vascular smooth muscle cell calcification.

      The Journal of Biological Chemistry
      Alkaline Phosphatase, pharmacology, Animals, Animals, Newborn, Blotting, Northern, Calcium, metabolism, Casein Kinase II, Cells, Cultured, Dose-Response Relationship, Drug, Humans, Muscle, Smooth, Vascular, Osteopontin, Phosphorylation, Plasmids, Precipitin Tests, Protein-Serine-Threonine Kinases, RNA, Messenger, Rats, Recombinant Proteins, Sialoglycoproteins, physiology, Time Factors

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Osteopontin (OPN) is a non-collagenous, glycosylated phosphoprotein associated with biomineralization in osseous tissues, as well as ectopic calcification. We previously reported that osteopontin was co-localized with calcified deposits in atherosclerotic lesions, and that osteopontin potently inhibits calcium deposition in a human smooth muscle cell (HSMC) culture model of vascular calcification. In this report, the role of phosphorylation in osteopontin's mineralization inhibitory function was examined. The ability of OPN to inhibit calcification completely depended on post-translational modifications, since bacteria-derived recombinant OPN did not inhibit HSMC mineralization. Following casein kinase II treatment, phosphorylated OPN (P-OPN) dose-dependently inhibited calcification of HSMC cultured in vitro about as effectively as native OPN. The inhibitory effect of osteopontin depended on the extent of phosphorylation. To determine the specific structural domains of OPN important for inhibition of calcification, we compared OPN fragments (N-terminal, C-terminal, and full-length), and compared the inhibitory effect of both phosphorylated and non-phosphorylated fragments. While none of the non-phosphorylated OPN fragments effected calcification, P-OPN caused dose dependent inhibition of HSMC calcification. P-OPN was treated with alkaline phosphatase to create dephosphorylated OPN. Dephosphorylated OPN did not have an inhibitory effect on calcification. The expression of OPN mRNA and P-OPN secretion by HSMC were decreased in a time-dependent manner during culture calcification. These results indicate that phosphorylation is required for the inhibitory effect of OPN on HSMC calcification, and that regulation of OPN phosphorylation represents one way in which mineralization may be controlled by cells.

          Related collections

          Author and article information

          Comments

          Comment on this article