159
views
0
recommends
+1 Recommend
1 collections
    3
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Interaction of nanoparticles with proteins: relation to bio-reactivity of the nanoparticle

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Interaction of nanoparticles with proteins is the basis of nanoparticle bio-reactivity. This interaction gives rise to the formation of a dynamic nanoparticle-protein corona. The protein corona may influence cellular uptake, inflammation, accumulation, degradation and clearance of the nanoparticles. Furthermore, the nanoparticle surface can induce conformational changes in adsorbed protein molecules which may affect the overall bio-reactivity of the nanoparticle. In depth understanding of such interactions can be directed towards generating bio-compatible nanomaterials with controlled surface characteristics in a biological environment. The main aim of this review is to summarise current knowledge on factors that influence nanoparticle-protein interactions and their implications on cellular uptake.

          Related collections

          Most cited references83

          • Record: found
          • Abstract: found
          • Article: not found

          Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts.

          Nanoparticles in a biological fluid (plasma, or otherwise) associate with a range of biopolymers, especially proteins, organized into the "protein corona" that is associated with the nanoparticle and continuously exchanging with the proteins in the environment. Methodologies to determine the corona and to understand its dependence on nanomaterial properties are likely to become important in bionanoscience. Here, we study the long-lived ("hard") protein corona formed from human plasma for a range of nanoparticles that differ in surface properties and size. Six different polystyrene nanoparticles were studied: three different surface chemistries (plain PS, carboxyl-modified, and amine-modified) and two sizes of each (50 and 100 nm), enabling us to perform systematic studies of the effect of surface properties and size on the detailed protein coronas. Proteins in the corona that are conserved and unique across the nanoparticle types were identified and classified according to the protein functional properties. Remarkably, both size and surface properties were found to play a very significant role in determining the nanoparticle coronas on the different particles of identical materials. We comment on the future need for scientific understanding, characterization, and possibly some additional emphasis on standards for the surfaces of nanoparticles.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties.

            Nanomaterials (NM) exhibit novel physicochemical properties that determine their interaction with biological substrates and processes. Three metal oxide nanoparticles that are currently being produced in high tonnage, TiO(2), ZnO, and CeO(2), were synthesized by flame spray pyrolysis process and compared in a mechanistic study to elucidate the physicochemical characteristics that determine cellular uptake, subcellular localization, and toxic effects based on a test paradigm that was originally developed for oxidative stress and cytotoxicity in RAW 264.7 and BEAS-2B cell lines. ZnO induced toxicity in both cells, leading to the generation of reactive oxygen species (ROS), oxidant injury, excitation of inflammation, and cell death. Using ICP-MS and fluorescent-labeled ZnO, it is found that ZnO dissolution could happen in culture medium and endosomes. Nondissolved ZnO nanoparticles enter caveolae in BEAS-2B but enter lysosomes in RAW 264.7 cells in which smaller particle remnants dissolve. In contrast, fluorescent-labeled CeO(2) nanoparticles were taken up intact into caveolin-1 and LAMP-1 positive endosomal compartments, respectively, in BEAS-2B and RAW 264.7 cells, without inflammation or cytotoxicity. Instead, CeO(2) suppressed ROS production and induced cellular resistance to an exogenous source of oxidative stress. Fluorescent-labeled TiO(2) was processed by the same uptake pathways as CeO(2) but did not elicit any adverse or protective effects. These results demonstrate that metal oxide nanoparticles induce a range of biological responses that vary from cytotoxic to cytoprotective and can only be properly understood by using a tiered test strategy such as we developed for oxidative stress and adapted to study other aspects of nanoparticle toxicity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Physical-chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles.

              It is now clearly emerging that besides size and shape, the other primary defining element of nanoscale objects in biological media is their long-lived protein ("hard") corona. This corona may be expressed as a durable, stabilizing coating of the bare surface of nanoparticle (NP) monomers, or it may be reflected in different subpopulations of particle assemblies, each presenting a durable protein coating. Using the approach and concepts of physical chemistry, we relate studies on the composition of the protein corona at different plasma concentrations with structural data on the complexes both in situ and free from excess plasma. This enables a high degree of confidence in the meaning of the hard protein corona in a biological context. Here, we present the protein adsorption for two compositionally different NPs, namely sulfonated polystyrene and silica NPs. NP-protein complexes are characterized by differential centrifugal sedimentation, dynamic light scattering, and zeta-potential both in situ and once isolated from plasma as a function of the protein/NP surface area ratio. We then introduce a semiquantitative determination of their hard corona composition using one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis and electrospray liquid chromatography mass spectrometry, which allows us to follow the total binding isotherms for the particles, identifying simultaneously the nature and amount of the most relevant proteins as a function of the plasma concentration. We find that the hard corona can evolve quite significantly as one passes from protein concentrations appropriate to in vitro cell studies to those present in in vivo studies, which has deep implications for in vitro-in vivo extrapolations and will require some consideration in the future.
                Bookmark

                Author and article information

                Contributors
                Journal
                J Nanobiotechnology
                J Nanobiotechnology
                Journal of Nanobiotechnology
                BioMed Central
                1477-3155
                2013
                19 July 2013
                : 11
                : 26
                Affiliations
                [1 ]Centre for Biodiscovery and Molecular Development of Therapeutics, School of Pharmacy and Molecular Science, James Cook University, Townsville, Queensland, Australia
                [2 ]Department of Molecular Biology, University of Salzburg, Salzburg, Austria
                Article
                1477-3155-11-26
                10.1186/1477-3155-11-26
                3720198
                23870291
                1f3e318c-2edd-42bb-bb65-6ce3c84ecdc1
                Copyright © 2013 Saptarshi et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 24 May 2013
                : 12 July 2013
                Categories
                Review

                Biotechnology
                nanoparticle,protein corona,protein unfolding,nanoparticle uptake,circular dichroism
                Biotechnology
                nanoparticle, protein corona, protein unfolding, nanoparticle uptake, circular dichroism

                Comments

                Comment on this article