55
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Gene discovery using next-generation pyrosequencing to develop ESTs for Phalaenopsis orchids

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Orchids are one of the most diversified angiosperms, but few genomic resources are available for these non-model plants. In addition to the ecological significance, Phalaenopsis has been considered as an economically important floriculture industry worldwide. We aimed to use massively parallel 454 pyrosequencing for a global characterization of the Phalaenopsis transcriptome.

          Results

          To maximize sequence diversity, we pooled RNA from 10 samples of different tissues, various developmental stages, and biotic- or abiotic-stressed plants. We obtained 206,960 expressed sequence tags (ESTs) with an average read length of 228 bp. These reads were assembled into 8,233 contigs and 34,630 singletons. The unigenes were searched against the NCBI non-redundant (NR) protein database. Based on sequence similarity with known proteins, these analyses identified 22,234 different genes (E-value cutoff, e -7). Assembled sequences were annotated with Gene Ontology, Gene Family and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Among these annotations, over 780 unigenes encoding putative transcription factors were identified.

          Conclusion

          Pyrosequencing was effective in identifying a large set of unigenes from Phalaenopsis. The informative EST dataset we developed constitutes a much-needed resource for discovery of genes involved in various biological processes in Phalaenopsis and other orchid species. These transcribed sequences will narrow the gap between study of model organisms with many genomic resources and species that are important for ecological and evolutionary studies.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression.

          The transcription factors DREBs/CBFs specifically interact with the dehydration-responsive element/C-repeat (DRE/CRT) cis-acting element (core motif: G/ACCGAC) and control the expression of many stress-inducible genes in Arabidopsis. In rice, we isolated five cDNAs for DREB homologs: OsDREB1A, OsDREB1B, OsDREB1C, OsDREB1D, and OsDREB2A. Expression of OsDREB1A and OsDREB1B was induced by cold, whereas expression of OsDREB2A was induced by dehydration and high-salt stresses. The OsDREB1A and OsDREB2A proteins specifically bound to DRE and activated the transcription of the GUS reporter gene driven by DRE in rice protoplasts. Over-expression of OsDREB1A in transgenic Arabidopsis induced over-expression of target stress-inducible genes of Arabidopsis DREB1A resulting in plants with higher tolerance to drought, high-salt, and freezing stresses. This indicated that OsDREB1A has functional similarity to DREB1A. However, in microarray and RNA blot analyses, some stress-inducible target genes of the DREB1A proteins that have only ACCGAC as DRE were not over-expressed in the OsDREB1A transgenic Arabidopsis. The OsDREB1A protein bound to GCCGAC more preferentially than to ACCGAC whereas the DREB1A proteins bound to both GCCGAC and ACCGAC efficiently. The structures of DREB1-type ERF/AP2 domains in monocots are closely related to each other as compared with that in the dicots. OsDREB1A is potentially useful for producing transgenic monocots that are tolerant to drought, high-salt, and/or cold stresses.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Role of DREB transcription factors in abiotic and biotic stress tolerance in plants.

            Abiotic and biotic stresses negatively influence survival, biomass production and crop yield. Being multigenic as well as a quantitative trait, it is a challenge to understand the molecular basis of abiotic stress tolerance and to manipulate it as compared to biotic stresses. Lately, some transcription factor(s) that regulate the expression of several genes related to stress have been discovered. One such class of the transcription factors is DREB/CBF that binds to drought responsive cis-acting elements. DREBs belong to ERF family of transcription factors consisting of two subclasses, i.e. DREB1/CBF and DREB2 that are induced by cold and dehydration, respectively. The DREBs are apparently involved in biotic stress signaling pathway. It has been possible to engineer stress tolerance in transgenic plants by manipulating the expression of DREBs. This opens an excellent opportunity to develop stress tolerant crops in future. This review intends to focus on the structure, role of DREBs in plant stress signaling and the present status of their deployment in developing stress tolerant transgenic plants.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Widespread genome duplications throughout the history of flowering plants.

              Genomic comparisons provide evidence for ancient genome-wide duplications in a diverse array of animals and plants. We developed a birth-death model to identify evidence for genome duplication in EST data, and applied a mixture model to estimate the age distribution of paralogous pairs identified in EST sets for species representing the basal-most extant flowering plant lineages. We found evidence for episodes of ancient genome-wide duplications in the basal angiosperm lineages including Nuphar advena (yellow water lily: Nymphaeaceae) and the magnoliids Persea americana (avocado: Lauraceae), Liriodendron tulipifera (tulip poplar: Magnoliaceae), and Saruma henryi (Aristolochiaceae). In addition, we detected independent genome duplications in the basal eudicot Eschscholzia californica (California poppy: Papaveraceae) and the basal monocot Acorus americanus (Acoraceae), both of which were distinct from duplications documented for ancestral grass (Poaceae) and core eudicot lineages. Among gymnosperms, we found equivocal evidence for ancient polyploidy in Welwitschia mirabilis (Gnetales) and no evidence for polyploidy in pine, although gymnosperms generally have much larger genomes than the angiosperms investigated. Cross-species sequence divergence estimates suggest that synonymous substitution rates in the basal angiosperms are less than half those previously reported for core eudicots and members of Poaceae. These lower substitution rates permit inference of older duplication events. We hypothesize that evidence of an ancient duplication observed in the Nuphar data may represent a genome duplication in the common ancestor of all or most extant angiosperms, except Amborella.
                Bookmark

                Author and article information

                Journal
                BMC Genomics
                BMC Genomics
                BioMed Central
                1471-2164
                2011
                12 July 2011
                : 12
                : 360
                Affiliations
                [1 ]Department of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan
                [2 ]Orchid Research Center, National Cheng Kung University, Tainan 701, Taiwan
                [3 ]Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan 701, Taiwan
                [4 ]Department of Engineering Science, National Cheng Kung University, Tainan 701, Taiwan
                Article
                1471-2164-12-360
                10.1186/1471-2164-12-360
                3146457
                21749684
                1f5d0eac-472a-4925-8d48-9cbb1313dcb1
                Copyright ©2011 Hsiao et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 10 January 2011
                : 12 July 2011
                Categories
                Research Article

                Genetics
                Genetics

                Comments

                Comment on this article