210
views
0
recommends
+1 Recommend
0 collections
    2
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Redox regulation of FoxO transcription factors

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Transcription factors of the forkhead box, class O (FoxO) family are important regulators of the cellular stress response and promote the cellular antioxidant defense. On one hand, FoxOs stimulate the transcription of genes coding for antioxidant proteins located in different subcellular compartments, such as in mitochondria (i.e. superoxide dismutase-2, peroxiredoxins 3 and 5) and peroxisomes (catalase), as well as for antioxidant proteins found extracellularly in plasma ( e.g., selenoprotein P and ceruloplasmin). On the other hand, reactive oxygen species (ROS) as well as other stressful stimuli that elicit the formation of ROS, may modulate FoxO activity at multiple levels, including posttranslational modifications of FoxOs (such as phosphorylation and acetylation), interaction with coregulators, alterations in FoxO subcellular localization, protein synthesis and stability. Moreover, transcriptional and posttranscriptional control of the expression of genes coding for FoxOs is sensitive to ROS. Here, we review these aspects of FoxO biology focusing on redox regulation of FoxO signaling, and with emphasis on the interplay between ROS and FoxOs under various physiological and pathophysiological conditions. Of particular interest are the dual role played by FoxOs in cancer development and their key role in whole body nutrient homeostasis, modulating metabolic adaptations and/or disturbances in response to low vs. high nutrient intake. Examples discussed here include calorie restriction and starvation as well as adipogenesis, obesity and type 2 diabetes.

          Graphical abstract

          Highlights

          • FoxO transcription factors are regulators of metabolism and antioxidant defense.

          • Stressful stimuli, including oxidative stress, modulate FoxO activity.

          • FoxO activities are regulated by posttranslational modifications.

          • FoxO levels are controlled transcriptionally and post-transcriptionally.

          • Redox dysregulation of FoxOs contributes to the development of metabolic diseases.

          Related collections

          Most cited references255

          • Record: found
          • Abstract: found
          • Article: not found

          Global prevalence of diabetes: estimates for the year 2000 and projections for 2030.

          The goal of this study was to estimate the prevalence of diabetes and the number of people of all ages with diabetes for years 2000 and 2030. Data on diabetes prevalence by age and sex from a limited number of countries were extrapolated to all 191 World Health Organization member states and applied to United Nations' population estimates for 2000 and 2030. Urban and rural populations were considered separately for developing countries. The prevalence of diabetes for all age-groups worldwide was estimated to be 2.8% in 2000 and 4.4% in 2030. The total number of people with diabetes is projected to rise from 171 million in 2000 to 366 million in 2030. The prevalence of diabetes is higher in men than women, but there are more women with diabetes than men. The urban population in developing countries is projected to double between 2000 and 2030. The most important demographic change to diabetes prevalence across the world appears to be the increase in the proportion of people >65 years of age. These findings indicate that the "diabetes epidemic" will continue even if levels of obesity remain constant. Given the increasing prevalence of obesity, it is likely that these figures provide an underestimate of future diabetes prevalence.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The protein kinase complement of the human genome.

            G. Manning (2002)
            We have catalogued the protein kinase complement of the human genome (the "kinome") using public and proprietary genomic, complementary DNA, and expressed sequence tag (EST) sequences. This provides a starting point for comprehensive analysis of protein phosphorylation in normal and disease states, as well as a detailed view of the current state of human genome analysis through a focus on one large gene family. We identify 518 putative protein kinase genes, of which 71 have not previously been reported or described as kinases, and we extend or correct the protein sequences of 56 more kinases. New genes include members of well-studied families as well as previously unidentified families, some of which are conserved in model organisms. Classification and comparison with model organism kinomes identified orthologous groups and highlighted expansions specific to human and other lineages. We also identified 106 protein kinase pseudogenes. Chromosomal mapping revealed several small clusters of kinase genes and revealed that 244 kinases map to disease loci or cancer amplicons.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans.

              A C. elegans neurosecretory signaling system regulates whether animals enter the reproductive life cycle or arrest development at the long-lived dauer diapause stage. daf-2, a key gene in the genetic pathway that mediates this endocrine signaling, encodes an insulin receptor family member. Decreases in DAF-2 signaling induce metabolic and developmental changes, as in mammalian metabolic control by the insulin receptor. Decreased DAF-2 signaling also causes an increase in life-span. Life-span regulation by insulin-like metabolic control is analogous to mammalian longevity enhancement induced by caloric restriction, suggesting a general link between metabolism, diapause, and longevity.
                Bookmark

                Author and article information

                Contributors
                Journal
                Redox Biol
                Redox Biol
                Redox Biology
                Elsevier
                2213-2317
                03 July 2015
                December 2015
                03 July 2015
                : 6
                : 51-72
                Affiliations
                [a ]Institute of Nutrition, Department of Nutrigenomics, Friedrich-Schiller-Universität Jena, Dornburger Straße 29, 07743 Jena, Germany
                [b ]Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Arturo Duperier, 4, 28029 Madrid, Spain
                Author notes
                Article
                S2213-2317(15)00070-1
                10.1016/j.redox.2015.06.019
                4511623
                26184557
                1f68ace6-e74c-44f1-8858-0bfb44707372
                © 2015 Published by Elsevier B.V.

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 28 May 2015
                : 25 June 2015
                : 30 June 2015
                Categories
                Review Article

                forkhead box proteins,oxidative stress,stress signaling,antioxidant proteins,daf-16,c. elegans,insulin signaling,akt

                Comments

                Comment on this article