14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Borophene as a prototype for synthetic 2D materials development

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references75

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The rise of graphene

          Graphene is a rapidly rising star on the horizon of materials science and condensed matter physics. This strictly two-dimensional material exhibits exceptionally high crystal and electronic quality and, despite its short history, has already revealed a cornucopia of new physics and potential applications, which are briefly discussed here. Whereas one can be certain of the realness of applications only when commercial products appear, graphene no longer requires any further proof of its importance in terms of fundamental physics. Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed matter physics, where quantum relativistic phenomena, some of which are unobservable in high energy physics, can now be mimicked and tested in table-top experiments. More generally, graphene represents a conceptually new class of materials that are only one atom thick and, on this basis, offers new inroads into low-dimensional physics that has never ceased to surprise and continues to provide a fertile ground for applications.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Two Dimensional Atomic Crystals

            We report free-standing atomic crystals that are strictly 2D and can be viewed as individual atomic planes pulled out of bulk crystals or as unrolled single-wall nanotubes. By using micromechanical cleavage, we have prepared and studied a variety of 2D crystals, including single layers of boron nitride, graphite, several dichalcogenides and complex oxides. These atomically-thin sheets (essentially gigantic 2D molecules unprotected from the immediate environment) are stable under ambient conditions, exhibit high crystal quality and are continuous on a macroscopic scale.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Van der Waals heterostructures

              Research on graphene and other two-dimensional atomic crystals is intense and likely to remain one of the hottest topics in condensed matter physics and materials science for many years. Looking beyond this field, isolated atomic planes can also be reassembled into designer heterostructures made layer by layer in a precisely chosen sequence. The first - already remarkably complex - such heterostructures (referred to as 'van der Waals') have recently been fabricated and investigated revealing unusual properties and new phenomena. Here we review this emerging research area and attempt to identify future directions. With steady improvement in fabrication techniques, van der Waals heterostructures promise a new gold rush, rather than a graphene aftershock.
                Bookmark

                Author and article information

                Journal
                Nature Nanotechnology
                Nature Nanotech
                Springer Nature
                1748-3387
                1748-3395
                June 2018
                June 6 2018
                June 2018
                : 13
                : 6
                : 444-450
                Article
                10.1038/s41565-018-0157-4
                29875501
                1f77a7f8-457f-4807-ad3d-d2713181a224
                © 2018

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article