61
views
0
recommends
+1 Recommend
0 collections
    1
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Microplastics in marine mammals stranded around the British coast: ubiquitous but transitory?

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Plastic pollution represents a pervasive and increasing threat to marine ecosystems worldwide and there is a need to better understand the extent to which microplastics (<5 mm) are ingested by high trophic-level taxa, such as marine mammals. Here, we perform a comprehensive assessment by examining whole digestive tracts of 50 individuals from 10 species whilst operating strict contamination controls. Microplastics were ubiquitous with particles detected in every animal examined. The relatively low number per animal (mean = 5.5) suggests these particles are transitory. Stomachs, however, were found to contain a greater number than intestines, indicating a potential site of temporary retention. The majority of particles were fibres (84%) while the remaining 16% was fragments. Particles were mainly blue and black (42.5% and 26.4%) in colour and Nylon was the most prevalent (60%) polymer type. A possible relationship was found between the cause of death category and microplastic abundance, indicating that animals that died due to infectious diseases had a slightly higher number of particles than those that died of trauma and other drivers of mortality. It is not possible, however, to draw any firm conclusions on the potential biological significance of this observation and further research is required to better understand the potential chronic effects of microplastic exposure on animal health, particularly as marine mammals are widely considered important sentinels for the implications of pollution for the marine environment.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Transport and release of chemicals from plastics to the environment and to wildlife.

          Plastics debris in the marine environment, including resin pellets, fragments and microscopic plastic fragments, contain organic contaminants, including polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons, petroleum hydrocarbons, organochlorine pesticides (2,2'-bis(p-chlorophenyl)-1,1,1-trichloroethane, hexachlorinated hexanes), polybrominated diphenylethers, alkylphenols and bisphenol A, at concentrations from sub ng g(-1) to microg g(-1). Some of these compounds are added during plastics manufacture, while others adsorb from the surrounding seawater. Concentrations of hydrophobic contaminants adsorbed on plastics showed distinct spatial variations reflecting global pollution patterns. Model calculations and experimental observations consistently show that polyethylene accumulates more organic contaminants than other plastics such as polypropylene and polyvinyl chloride. Both a mathematical model using equilibrium partitioning and experimental data have demonstrated the transfer of contaminants from plastic to organisms. A feeding experiment indicated that PCBs could transfer from contaminated plastics to streaked shearwater chicks. Plasticizers, other plastics additives and constitutional monomers also present potential threats in terrestrial environments because they can leach from waste disposal sites into groundwater and/or surface waters. Leaching and degradation of plasticizers and polymers are complex phenomena dependent on environmental conditions in the landfill and the chemical properties of each additive. Bisphenol A concentrations in leachates from municipal waste disposal sites in tropical Asia ranged from sub microg l(-1) to mg l(-1) and were correlated with the level of economic development.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Tracking apex marine predator movements in a dynamic ocean.

            Pelagic marine predators face unprecedented challenges and uncertain futures. Overexploitation and climate variability impact the abundance and distribution of top predators in ocean ecosystems. Improved understanding of ecological patterns, evolutionary constraints and ecosystem function is critical for preventing extinctions, loss of biodiversity and disruption of ecosystem services. Recent advances in electronic tagging techniques have provided the capacity to observe the movements and long-distance migrations of animals in relation to ocean processes across a range of ecological scales. Tagging of Pacific Predators, a field programme of the Census of Marine Life, deployed 4,306 tags on 23 species in the North Pacific Ocean, resulting in a tracking data set of unprecedented scale and species diversity that covers 265,386 tracking days from 2000 to 2009. Here we report migration pathways, link ocean features to multispecies hotspots and illustrate niche partitioning within and among congener guilds. Our results indicate that the California Current large marine ecosystem and the North Pacific transition zone attract and retain a diverse assemblage of marine vertebrates. Within the California Current large marine ecosystem, several predator guilds seasonally undertake north-south migrations that may be driven by oceanic processes, species-specific thermal tolerances and shifts in prey distributions. We identify critical habitats across multinational boundaries and show that top predators exploit their environment in predictable ways, providing the foundation for spatial management of large marine ecosystems. ©2011 Macmillan Publishers Limited. All rights reserved
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Occurrence of microplastics in the gastrointestinal tract of pelagic and demersal fish from the English Channel.

              Microplastics are present in marine habitats worldwide and laboratory studies show this material can be ingested, yet data on abundance in natural populations is limited. This study documents microplastics in 10 species of fish from the English Channel. 504 Fish were examined and plastics found in the gastrointestinal tracts of 36.5%. All five pelagic species and all five demersal species had ingested plastic. Of the 184 fish that had ingested plastic the average number of pieces per fish was 1.90±0.10. A total of 351 pieces of plastic were identified using FT-IR Spectroscopy; polyamide (35.6%) and the semi-synthetic cellulosic material, rayon (57.8%) were most common. There was no significant difference between the abundance of plastic ingested by pelagic and demersal fish. Hence, microplastic ingestion appears to be common, in relatively small quantities, across a range of fish species irrespective of feeding habitat. Further work is needed to establish the potential consequences. Copyright © 2012 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                s.nelms@exeter.ac.uk
                b.j.godley@exeter.ac.uk
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                31 January 2019
                31 January 2019
                2019
                : 9
                : 1075
                Affiliations
                [1 ]Plymouth Marine Laboratory, Prospect Place, Plymouth, PL1 3DH UK
                [2 ]ISNI 0000 0004 1936 8024, GRID grid.8391.3, Centre for Ecology and Conservation, , University of Exeter, ; Cornwall, TR10 9EZ UK
                [3 ]ISNI 0000 0004 1936 8024, GRID grid.8391.3, Environment and Sustainability Institute, , University of Exeter, ; Cornwall, TR10 9EZ UK
                [4 ]Scottish Marine Animal Stranding Scheme, SRUC Veterinary Services, Drummondhill, Inverness, IV2 4JZ UK
                [5 ]ISNI 0000 0001 2242 7273, GRID grid.20419.3e, Cetacean Strandings Investigation Programme, , Institute of Zoology, Regent’s Park, ; London, NW1 4RY UK
                [6 ]ISNI 0000 0004 1936 8024, GRID grid.8391.3, Biosciences, Geoffrey Pope Building, , University of Exeter, ; Devon, EX4 4QD UK
                [7 ]ISNI 0000 0004 1936 8024, GRID grid.8391.3, Greenpeace Research Laboratories, Innovation Centre Phase 2, , University of Exeter, ; Devon, EX4 4RN UK
                Author information
                http://orcid.org/0000-0002-2780-2877
                Article
                37428
                10.1038/s41598-018-37428-3
                6355900
                30705316
                1f7beb31-2b7b-4cbb-a413-5ecbe4263302
                © The Author(s) 2019

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 7 August 2018
                : 30 November 2018
                Funding
                Funded by: FundRef https://doi.org/10.13039/501100000270, RCUK | Natural Environment Research Council (NERC);
                Award ID: NE/L002434/1
                Award ID: NE/L007010
                Award ID: NE/L003988/1
                Award Recipient :
                Categories
                Article
                Custom metadata
                © The Author(s) 2019

                Uncategorized
                Uncategorized

                Comments

                Comment on this article