33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Mutations in the SLC2A9 Gene Cause Hyperuricosuria and Hyperuricemia in the Dog

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Allantoin is the end product of purine catabolism in all mammals except humans, great apes, and one breed of dog, the Dalmatian. Humans and Dalmatian dogs produce uric acid during purine degradation, which leads to elevated levels of uric acid in blood and urine and can result in significant diseases in both species. The defect in Dalmatians results from inefficient transport of uric acid in both the liver and renal proximal tubules. Hyperuricosuria and hyperuricemia (huu) is a simple autosomal recessive trait for which all Dalmatian dogs are homozygous. Therefore, in order to map the locus, an interbreed backcross was used. Linkage mapping localized the huu trait to CFA03, which excluded the obvious urate transporter 1 gene, SLC22A12. Positional cloning placed the locus in a minimal interval of 2.5 Mb with a LOD score of 17.45. A critical interval of 333 kb containing only four genes was homozygous in all Dalmatians. Sequence and expression analyses of the SLC2A9 gene indicated three possible mutations, a missense mutation (G616T;C188F) and two promoter mutations that together appear to reduce the expression levels of one of the isoforms. The missense mutation is associated with hyperuricosuria in the Dalmatian, while the promoter SNPs occur in other unaffected breeds of dog. Verification of the causative nature of these changes was obtained when hyperuricosuric dogs from several other breeds were found to possess the same combination of mutations as found in the Dalmatian. The Dalmatian dog model of hyperuricosuria and hyperuricemia underscores the importance of SLC2A9 for uric acid transport in mammals.

          Author Summary

          Animals excrete waste products in their urine. When most mammals metabolize compounds, called purines, they produce allantoin as one waste product in their urine. Humans, great apes, and Dalmatian dogs produce a different breakdown product, uric acid. This leads to high levels of uric acid in the urine and blood. In humans, this can result in diseases such as kidney stones and gout and may cause hypertension. In Dalmatians, high uric acid levels result in bladder stones that often have to be removed surgically. The cause of high uric acid levels in humans and great apes is not the same as in the Dalmatian dog. Here we report the genetic cause of the Dalmatian condition. This change is shared by dogs from unrelated breeds, indicating that it predates the separation of dog breeds. The gene that causes excretion of uric acid in Dalmatians is important for controlling the amount of uric acid in human blood and is therefore important for human diseases. It is not clear why humans and great apes have evolved to excrete uric acid, but it appears that some dogs have developed a different mechanism that leads to the same result: elevations in urine and blood uric acid levels.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Molecular identification of a renal urate anion exchanger that regulates blood urate levels.

          Urate, a naturally occurring product of purine metabolism, is a scavenger of biological oxidants implicated in numerous disease processes, as demonstrated by its capacity of neuroprotection. It is present at higher levels in human blood (200 500 microM) than in other mammals, because humans have an effective renal urate reabsorption system, despite their evolutionary loss of hepatic uricase by mutational silencing. The molecular basis for urate handling in the human kidney remains unclear because of difficulties in understanding diverse urate transport systems and species differences. Here we identify the long-hypothesized urate transporter in the human kidney (URAT1, encoded by SLC22A12), a urate anion exchanger regulating blood urate levels and targeted by uricosuric and antiuricosuric agents (which affect excretion of uric acid). Moreover, we provide evidence that patients with idiopathic renal hypouricaemia (lack of blood uric acid) have defects in SLC22A12. Identification of URAT1 should provide insights into the nature of urate homeostasis, as well as lead to the development of better agents against hyperuricaemia, a disadvantage concomitant with human evolution.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            SLC2A9 is a newly identified urate transporter influencing serum urate concentration, urate excretion and gout.

            Uric acid is the end product of purine metabolism in humans and great apes, which have lost hepatic uricase activity, leading to uniquely high serum uric acid concentrations (200-500 microM) compared with other mammals (3-120 microM). About 70% of daily urate disposal occurs via the kidneys, and in 5-25% of the human population, impaired renal excretion leads to hyperuricemia. About 10% of people with hyperuricemia develop gout, an inflammatory arthritis that results from deposition of monosodium urate crystals in the joint. We have identified genetic variants within a transporter gene, SLC2A9, that explain 1.7-5.3% of the variance in serum uric acid concentrations, following a genome-wide association scan in a Croatian population sample. SLC2A9 variants were also associated with low fractional excretion of uric acid and/or gout in UK, Croatian and German population samples. SLC2A9 is a known fructose transporter, and we now show that it has strong uric acid transport activity in Xenopus laevis oocytes.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              PANTHER: a browsable database of gene products organized by biological function, using curated protein family and subfamily classification.

              P. Thomas (2003)
              The PANTHER database was designed for high-throughput analysis of protein sequences. One of the key features is a simplified ontology of protein function, which allows browsing of the database by biological functions. Biologist curators have associated the ontology terms with groups of protein sequences rather than individual sequences. Statistical models (Hidden Markov Models, or HMMs) are built from each of these groups. The advantage of this approach is that new sequences can be automatically classified as they become available. To ensure accurate functional classification, HMMs are constructed not only for families, but also for functionally distinct subfamilies. Multiple sequence alignments and phylogenetic trees, including curator-assigned information, are available for each family. The current version of the PANTHER database includes training sequences from all organisms in the GenBank non-redundant protein database, and the HMMs have been used to classify gene products across the entire genomes of human, and Drosophila melanogaster. The ontology terms and protein families and subfamilies, as well as Drosophila gene c;assifications, can be browsed and searched for free. Due to outstanding contractual obligations, access to human gene classifications and to protein family trees and multiple sequence alignments will temporarily require a nominal registration fee. PANTHER is publicly available on the web at http://panther.celera.com.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                November 2008
                November 2008
                7 November 2008
                : 4
                : 11
                : e1000246
                Affiliations
                [1 ]Department of Population Health and Reproduction, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
                [2 ]Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States of America
                [3 ]Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
                Stanford University School of Medicine, United States of America
                Author notes

                Conceived and designed the experiments: DB. Performed the experiments: NS AY NK. Analyzed the data: DB NS AY. Contributed reagents/materials/analysis tools: NS NK RSS GVL. Wrote the paper: DB AY.

                Article
                08-PLGE-RA-1043R2
                10.1371/journal.pgen.1000246
                2573870
                18989453
                1f815bc4-c635-4910-b55b-fe94204b8e9b
                Bannasch et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 12 August 2008
                : 30 September 2008
                Page count
                Pages: 8
                Categories
                Research Article
                Biochemistry
                Evolutionary Biology/Animal Genetics
                Genetics and Genomics/Animal Genetics
                Physiology/Gastroenterology and Hepatology
                Physiology/Renal, Fluid, and Electrolyte Physiology

                Genetics
                Genetics

                Comments

                Comment on this article