7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Dental tissue effects of fluoride.

      Advances in dental research
      Amelogenesis, drug effects, Animals, Dental Enamel, ultrastructure, Dose-Response Relationship, Drug, Fluorides, adverse effects, Fluorosis, Dental, etiology, Humans, Microscopy, Electron, Scanning

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          It is now well-established that a linear relationship exists between fluoride dose and enamel fluorosis in human populations. With increasing severity, the subsurface enamel all along the tooth becomes increasingly porous (hypomineralized), and the lesion extends toward the inner enamel. In dentin, hypomineralization results in an enhancement of the incremental lines. After eruption, the more severe forms are subject to extensive mechanical breakdown of the surface. The continuum of fluoride-induced changes can best be classified by the TF index, which reflects, on an ordinal scale, the histopathological features and increases in enamel fluoride concentrations. Human and animal studies have shown that it is possible to develop dental fluorosis by exposure during enamel maturation alone. It is less apparent whether an effect of fluoride on the stage of enamel matrix secretion, alone, is able to produce changes in enamel similar to those described as dental fluorosis in man. The clinical concept of post-eruptive maturation of erupting sound human enamel, resulting in fluoride uptake, most likely reflects subclinical caries. Incorporation of fluoride into enamel is principally possible only as a result of concomitant enamel dissolution (caries lesion development). At higher fluoride concentrations, calcium-fluoride-like material may form, although the formation, identification, and dissolution of this compound are far from resolved. It is concluded that dental fluorosis is a sensitive way of recording past fluoride exposure because, so far, no other agent or condition in man is known to create changes within the dentition similar to those induced by fluoride. Since the predominant cariostatic effect of fluoride is not due to its uptake by the enamel during tooth development, it is possible to obtain extensive caries reductions without a concomitant risk of dental fluorosis.

          Related collections

          Author and article information

          Comments

          Comment on this article