5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Antiquity of forelimb ecomorphological diversity in the mammalian stem lineage (Synapsida)

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Significance

          Mammals and their closest fossil relatives use their shoulders and forelimbs for many functions, which is reflected by the great range of mammalian forelimb shapes. We found that forelimb shape diversity in the early mammalian lineage (Synapsida) began to increase about 270 million years ago, with the emergence of a group called Therapsida, and is accompanied by new forelimb functions. The functional diversification of therapsid forelimbs was curtailed by the Permo-Triassic mass extinction, but eventually continued as more mammal-like therapsids evolved new ecologies. Our analyses characterize the deep time origin of a quintessential part of the mammalian body plan: evolutionarily labile forelimbs that can be deployed in a wide range of functional and ecological roles.

          Abstract

          Mammals and their closest fossil relatives are unique among tetrapods in expressing a high degree of pectoral girdle and forelimb functional diversity associated with fully pelagic, cursorial, subterranean, volant, and other lifestyles. However, the earliest members of the mammalian stem lineage, the “pelycosaur”-grade synapsids, present a far more limited range of morphologies and inferred functions. The more crownward nonmammaliaform therapsids display novel forelimb morphologies that have been linked to expanded functional diversity, suggesting that the roots of this quintessentially mammalian phenotype can be traced to the pelycosaur–therapsid transition in the Permian period. We quantified morphological disparity of the humerus in pelycosaur-grade synapsids and therapsids using geometric morphometrics. We found that disparity begins to increase concurrently with the emergence of Therapsida, and that it continues to rise until the Permo-Triassic mass extinction. Further, therapsid exploration of new regions of morphospace is correlated with the evolution of novel ecomorphologies, some of which are characterized by changes to overall limb morphology. This evolutionary pattern confirms that nonmammaliaform therapsid forelimbs underwent ecomorphological diversification throughout the Permian, with functional elaboration initially being more strongly expressed in the proximal end of the humerus than the distal end. The role of the forelimbs in the functional diversification of therapsids foreshadows the deployment of forelimb morphofunctional diversity in the evolutionary radiation of mammals.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: not found
          • Article: not found

          The timing and pattern of biotic recovery following the end-Permian mass extinction

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Initial pulse of Siberian Traps sills as the trigger of the end-Permian mass extinction

            Mass extinction events are short-lived and characterized by catastrophic biosphere collapse and subsequent reorganization. Their abrupt nature necessitates a similarly short-lived trigger, and large igneous province magmatism is often implicated. However, large igneous provinces are long-lived compared to mass extinctions. Therefore, if large igneous provinces are an effective trigger, a subinterval of magmatism must be responsible for driving deleterious environmental effects. The onset of Earth’s most severe extinction, the end-Permian, coincided with an abrupt change in the emplacement style of the contemporaneous Siberian Traps large igneous province, from dominantly flood lavas to sill intrusions. Here we identify the initial emplacement pulse of laterally extensive sills as the critical deadly interval. Heat from these sills exposed untapped volatile-fertile sediments to contact metamorphism, likely liberating the massive greenhouse gas volumes needed to drive extinction. These observations suggest that large igneous provinces characterized by sill complexes are more likely to trigger catastrophic global environmental change than their flood basalt- and/or dike-dominated counterparts.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A Mesozoic gliding mammal from northeastern China.

              Gliding flight has independently evolved many times in vertebrates. Direct evidence of gliding is rare in fossil records and is unknown in mammals from the Mesozoic era. Here we report a new Mesozoic mammal from Inner Mongolia, China, that represents a previously unknown group characterized by a highly specialized insectivorous dentition and a sizable patagium (flying membrane) for gliding flight. The patagium is covered with dense hair and supported by an elongated tail and limbs; the latter also bear many features adapted for arboreal life. This discovery extends the earliest record of gliding flight for mammals to at least 70 million years earlier in geological history, and demonstrates that early mammals were diverse in their locomotor strategies and lifestyles; they had experimented with an aerial habit at about the same time as, if not earlier than, when birds endeavoured to exploit the sky.
                Bookmark

                Author and article information

                Journal
                Proc Natl Acad Sci U S A
                Proc. Natl. Acad. Sci. U.S.A
                pnas
                pnas
                PNAS
                Proceedings of the National Academy of Sciences of the United States of America
                National Academy of Sciences
                0027-8424
                1091-6490
                2 April 2019
                18 March 2019
                18 March 2019
                : 116
                : 14
                : 6903-6907
                Affiliations
                [1] aDepartment of Organismal Biology and Anatomy, The University of Chicago , Chicago, IL 60637;
                [2] bEarth Sciences, Integrative Research Center, Field Museum of Natural History , Chicago, IL 60605-2496
                Author notes
                1To whom correspondence should be addressed. Email: jlungmus@ 123456uchicago.edu .

                Edited by Jörg Fröbisch, Museum of Natural History Leibniz Institute for Evolutionary and Biodiversity Research, Berlin, Germany, and accepted by Editorial Board Member Scott V. Edwards February 13, 2019 (received for review February 28, 2018)

                Author contributions: J.K.L. and K.D.A. designed research; J.K.L. performed research; J.K.L. and K.D.A. analyzed data; and J.K.L. and K.D.A. wrote the paper.

                Author information
                http://orcid.org/0000-0001-8215-3796
                Article
                201802543
                10.1073/pnas.1802543116
                6452662
                30886085
                1f859b39-8284-4b6c-9346-90d4b89e7009
                Copyright © 2019 the Author(s). Published by PNAS.

                This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

                History
                Page count
                Pages: 5
                Funding
                Funded by: National Science Foundation (NSF) 100000001
                Award ID: NSF DEB-1754502
                Award Recipient : Kenneth D. Angielczyk
                Categories
                Biological Sciences
                Evolution

                therapsida,mammalia,humerus,ecological diversity,morphological disparity

                Comments

                Comment on this article