15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Structure and Pharmacology of Voltage-Gated Sodium and Calcium Channels

      1 , 1 , 1
      Annual Review of Pharmacology and Toxicology
      Annual Reviews

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Voltage-gated sodium and calcium channels are evolutionarily related transmembrane signaling proteins that initiate action potentials, neurotransmission, excitation-contraction coupling, and other physiological processes. Genetic or acquired dysfunction of these proteins causes numerous diseases, termed channelopathies, and sodium and calcium channels are the molecular targets for several major classes of drugs. Recent advances in the structural biology of these proteins using X-ray crystallography and cryo-electron microscopy have given new insights into the molecular basis for their function and pharmacology. Here we review this recent literature and integrate findings on sodium and calcium channels to reveal the structural basis for their voltage-dependent activation, fast and slow inactivation, ion conductance and selectivity, and complex pharmacology at the atomic level. We conclude with the theme that new understanding of the diseases and therapeutics of these channels will be derived from application of the emerging structural principles from these recent structural analyses.

          Related collections

          Most cited references125

          • Record: found
          • Abstract: found
          • Article: not found

          Voltage-gated calcium channels.

          Voltage-gated calcium (Ca(2+)) channels are key transducers of membrane potential changes into intracellular Ca(2+) transients that initiate many physiological events. There are ten members of the voltage-gated Ca(2+) channel family in mammals, and they serve distinct roles in cellular signal transduction. The Ca(V)1 subfamily initiates contraction, secretion, regulation of gene expression, integration of synaptic input in neurons, and synaptic transmission at ribbon synapses in specialized sensory cells. The Ca(V)2 subfamily is primarily responsible for initiation of synaptic transmission at fast synapses. The Ca(V)3 subfamily is important for repetitive firing of action potentials in rhythmically firing cells such as cardiac myocytes and thalamic neurons. This article presents the molecular relationships and physiological functions of these Ca(2+) channel proteins and provides information on their molecular, genetic, physiological, and pharmacological properties.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Structure of the voltage-gated calcium channel Cav1.1 at 3.6 Å resolution.

            The voltage-gated calcium (Cav) channels convert membrane electrical signals to intracellular Ca(2+)-mediated events. Among the ten subtypes of Cav channel in mammals, Cav1.1 is specified for the excitation-contraction coupling of skeletal muscles. Here we present the cryo-electron microscopy structure of the rabbit Cav1.1 complex at a nominal resolution of 3.6 Å. The inner gate of the ion-conducting α1-subunit is closed and all four voltage-sensing domains adopt an 'up' conformation, suggesting a potentially inactivated state. The extended extracellular loops of the pore domain, which are stabilized by multiple disulfide bonds, form a windowed dome above the selectivity filter. One side of the dome provides the docking site for the α2δ-1-subunit, while the other side may attract cations through its negative surface potential. The intracellular I-II and III-IV linker helices interact with the β1a-subunit and the carboxy-terminal domain of α1, respectively. Classification of the particles yielded two additional reconstructions that reveal pronounced displacement of β1a and adjacent elements in α1. The atomic model of the Cav1.1 complex establishes a foundation for mechanistic understanding of excitation-contraction coupling and provides a three-dimensional template for molecular interpretations of the functions and disease mechanisms of Cav and Nav channels.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A cluster of hydrophobic amino acid residues required for fast Na(+)-channel inactivation.

              The inward Na+ current underlying the action potential in nerve is terminated by inactivation. The preceding report shows that deletions within the intracellular linker between domains III and IV remove inactivation, but mutation of conserved basic and paired acidic amino acids has little effect. Here we show that substitution of glutamine for three clustered hydrophobic amino acids, Ile-1488, Phe-1489, and Met-1490, completely removes fast inactivation. Substitution of Met-1490 alone slows inactivation significantly, substitution of Ile-1488 alone both slows inactivation and makes it incomplete, and substitution of Phe-1489 alone removes inactivation nearly completely. These results demonstrate an essential role of Phe-1489 in Na(+)-channel inactivation. It is proposed that the hydrophobic cluster of Ile-1488, Phe-1489, and Met-1490 serves as a hydrophobic latch that stabilizes the inactivated state in a hinged-lid mechanism of Na(+)-channel inactivation.
                Bookmark

                Author and article information

                Journal
                Annual Review of Pharmacology and Toxicology
                Annu. Rev. Pharmacol. Toxicol.
                Annual Reviews
                0362-1642
                1545-4304
                January 06 2020
                January 06 2020
                : 60
                : 1
                : 133-154
                Affiliations
                [1 ]Department of Pharmacology and Division of General Internal Medicine, Department of Medicine, University of Washington, Seattle, Washington 98195, USA;
                Article
                10.1146/annurev-pharmtox-010818-021757
                31537174
                1fa7121d-c2ac-4163-8869-21818ed0bd82
                © 2020
                History

                Comments

                Comment on this article