8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Vulnerability to xylem embolism as a major correlate of the environmental distribution of rain forest species on a tropical island : Embolism vulnerability and rain forest species distribution

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: not found

          Towards a worldwide wood economics spectrum.

          Wood performs several essential functions in plants, including mechanically supporting aboveground tissue, storing water and other resources, and transporting sap. Woody tissues are likely to face physiological, structural and defensive trade-offs. How a plant optimizes among these competing functions can have major ecological implications, which have been under-appreciated by ecologists compared to the focus they have given to leaf function. To draw together our current understanding of wood function, we identify and collate data on the major wood functional traits, including the largest wood density database to date (8412 taxa), mechanical strength measures and anatomical features, as well as clade-specific features such as secondary chemistry. We then show how wood traits are related to one another, highlighting functional trade-offs, and to ecological and demographic plant features (growth form, growth rate, latitude, ecological setting). We suggest that, similar to the manifold that tree species leaf traits cluster around the 'leaf economics spectrum', a similar 'wood economics spectrum' may be defined. We then discuss the biogeography, evolution and biogeochemistry of the spectrum, and conclude by pointing out the major gaps in our current knowledge of wood functional traits.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A significant upward shift in plant species optimum elevation during the 20th century.

            Spatial fingerprints of climate change on biotic communities are usually associated with changes in the distribution of species at their latitudinal or altitudinal extremes. By comparing the altitudinal distribution of 171 forest plant species between 1905 and 1985 and 1986 and 2005 along the entire elevation range (0 to 2600 meters above sea level) in west Europe, we show that climate warming has resulted in a significant upward shift in species optimum elevation averaging 29 meters per decade. The shift is larger for species restricted to mountain habitats and for grassy species, which are characterized by faster population turnover. Our study shows that climate change affects the spatial core of the distributional range of plant species, in addition to their distributional margins, as previously reported.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Regional vegetation die-off in response to global-change-type drought.

              Future drought is projected to occur under warmer temperature conditions as climate change progresses, referred to here as global-change-type drought, yet quantitative assessments of the triggers and potential extent of drought-induced vegetation die-off remain pivotal uncertainties in assessing climate-change impacts. Of particular concern is regional-scale mortality of overstory trees, which rapidly alters ecosystem type, associated ecosystem properties, and land surface conditions for decades. Here, we quantify regional-scale vegetation die-off across southwestern North American woodlands in 2002-2003 in response to drought and associated bark beetle infestations. At an intensively studied site within the region, we quantified that after 15 months of depleted soil water content, >90% of the dominant, overstory tree species (Pinus edulis, a piñon) died. The die-off was reflected in changes in a remotely sensed index of vegetation greenness (Normalized Difference Vegetation Index), not only at the intensively studied site but also across the region, extending over 12,000 km2 or more; aerial and field surveys confirmed the general extent of the die-off. Notably, the recent drought was warmer than the previous subcontinental drought of the 1950s. The limited, available observations suggest that die-off from the recent drought was more extensive than that from the previous drought, extending into wetter sites within the tree species' distribution. Our results quantify a trigger leading to rapid, drought-induced die-off of overstory woody plants at subcontinental scale and highlight the potential for such die-off to be more severe and extensive for future global-change-type drought under warmer conditions.
                Bookmark

                Author and article information

                Journal
                Plant, Cell & Environment
                Plant, Cell & Environment
                Wiley
                01407791
                February 2017
                February 2017
                December 16 2016
                : 40
                : 2
                : 277-289
                Affiliations
                [1 ]IRD, UMR AMAP; BPA5 98800 Noumea New Caledonia
                [2 ]Institut Agronomique néo-Calédonien (IAC); Diversité biologique et fonctionnelle des écosystèmes terrestes; 98848 Noumea New Caledonia
                [3 ]Naturalis Biodiversity Center; Leiden University; PO Box 9517 2300RA Leiden The Netherlands
                [4 ]Department of Ecology and Evolutionary Biology; Tulane University; New Orleans LA 70118 USA
                [5 ]Instituto de Biología; Universidad Nacional Autónoma de México; Tercer Circuito s/n de Ciudad Universitaria México DF 04510 Mexico
                [6 ]BIOGECO; INRA-Univ.; Bordeaux 33610 Cestas France
                Article
                10.1111/pce.12859
                27862015
                1fa8fe5c-e646-4875-8e27-b868ef416d8b
                © 2016

                http://doi.wiley.com/10.1002/tdm_license_1

                http://onlinelibrary.wiley.com/termsAndConditions

                History

                Comments

                Comment on this article