87
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Increased Long Chain acyl-Coa Synthetase Activity and Fatty Acid Import Is Linked to Membrane Synthesis for Development of Picornavirus Replication Organelles

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          All positive strand (+RNA) viruses of eukaryotes replicate their genomes in association with membranes. The mechanisms of membrane remodeling in infected cells represent attractive targets for designing future therapeutics, but our understanding of this process is very limited. Elements of autophagy and/or the secretory pathway were proposed to be hijacked for building of picornavirus replication organelles. However, even closely related viruses differ significantly in their requirements for components of these pathways. We demonstrate here that infection with diverse picornaviruses rapidly activates import of long chain fatty acids. While in non-infected cells the imported fatty acids are channeled to lipid droplets, in infected cells the synthesis of neutral lipids is shut down and the fatty acids are utilized in highly up-regulated phosphatidylcholine synthesis. Thus the replication organelles are likely built from de novo synthesized membrane material, rather than from the remodeled pre-existing membranes. We show that activation of fatty acid import is linked to the up-regulation of cellular long chain acyl-CoA synthetase activity and identify the long chain acyl-CoA syntheatse3 (Acsl3) as a novel host factor required for polio replication. Poliovirus protein 2A is required to trigger the activation of import of fatty acids independent of its protease activity. Shift in fatty acid import preferences by infected cells results in synthesis of phosphatidylcholines different from those in uninfected cells, arguing that the viral replication organelles possess unique properties compared to the pre-existing membranes. Our data show how poliovirus can change the overall cellular membrane homeostasis by targeting one critical process. They explain earlier observations of increased phospholipid synthesis in infected cells and suggest a simple model of the structural development of the membranous scaffold of replication complexes of picorna-like viruses, that may be relevant for other (+)RNA viruses as well.

          Author Summary

          Eukaryotic cells feature astonishing complexity of regulatory networks, yet control over this fine-tuned machinery is easily overrun by viruses with expression of just a handful of proteins. One of the striking examples of such hostile take-over is the rewiring of normal cellular membrane metabolism by (+)RNA viruses towards development of new membranous organelles harboring viral replication machinery. (+)RNA viruses of eukaryotes infect organisms from unicellular algae to humans. Many of them induce diseases resulting in significant economic losses, public health burden, human suffering and sometimes fatal consequences. We show how picornaviruses reorganize cellular lipid metabolism by targeting long chain acyl-CoA synthetase activity. This induces increased import of fatty acids in infected cells and up-regulation of phospholipid synthesis, resulting in formation of replication organelles different from the pre-existing cellular membranes. This mechanism is utilized by diverse viruses and may represent an attractive target for anti-viral interventions.

          Related collections

          Most cited references67

          • Record: found
          • Abstract: found
          • Article: not found

          Modification of intracellular membrane structures for virus replication

          Key Points Plus-stranded RNA viruses induce large membrane structures that might support the replication of their genomes. Similarly, cytoplasmic replication of poxviruses (large DNA viruses) occurs in associated membranes. These membranes originate from the endoplasmic reticulum (ER) or endosomes. Membrane vesicles that support viral replication are induced by a number of RNA viruses. Similarly, the poxvirus replication site is surrounded by a double-membraned cisterna that is derived from the ER. Analogies to autophagy have been proposed since the finding that autophagy cellular processes involve the formation of double-membrane vesicles. However, molecular evidence to support this hypothesis is lacking. Membrane association of the viral replication complex is mediated by the presence of one or more viral proteins that contain sequences which associate with, or integrate into, membranes. Replication-competent membranes might contain viral or cellular proteins that contain amphipathic helices, which could mediate the membrane bending that is required to form spherical vesicles. Whereas poxvirus DNA replication occurs inside the ER-enclosed site, for most RNA viruses the topology of replication is not clear. Preliminary results for some RNA viruses suggest that their replication could also occur inside double-membrane vesicles. We speculate that cytoplasmic replication might occur inside sites that are 'enwrapped' by an ER-derived cisterna, and that these cisternae are open to the cytoplasm. Thus, RNA and DNA viruses could use a common mechanism for replication that involves membrane wrapping by cellular cisternal membranes. We propose that three-dimensional analyses using high-resolution electron-microscopy techniques could be useful for addressing this issue. High-throughput small-interfering-RNA screens should also shed light on molecular requirements for virus-induced membrane modifications.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mammalian long-chain acyl-CoA synthetases.

            Acyl-CoA synthetase enzymes are essential for de novo lipid synthesis, fatty acid catabolism, and remodeling of membranes. Activation of fatty acids requires a two-step reaction catalyzed by these enzymes. In the first step, an acyl-AMP intermediate is formed from ATP. AMP is then exchanged with CoA to produce the activated acyl-CoA. The release of AMP in this reaction defines the superfamily of AMP-forming enzymes. The length of the carbon chain of the fatty acid species defines the substrate specificity for the different acyl-CoA synthetases (ACS). On this basis, five sub-families of ACS have been characterized. The purpose of this review is to report on the large family of mammalian long-chain acyl-CoA synthetases (ACSL), which activate fatty acids with chain lengths of 12 to 20 carbon atoms. Five genes and several isoforms generated by alternative splicing have been identified and limited information is available on their localization. The structure of these membrane proteins has not been solved for the mammalian ACSLs but homology to a bacterial form, whose structure has been determined, points at specific structural features that are important for these enzymes across species. The bacterial form acts as a dimer and has a conserved short motif, called the fatty acid Gate domain, that seems to determine substrate specificity. We will discuss the characterization and identification of the different spliced isoforms, draw attention to the inconsistencies and errors in their annotations, and their cellular localizations. These membrane proteins act on membrane-bound substrates probably as homo- and as heterodimer complexes but have often been expressed as single recombinant isoforms, apparently purified as monomers and tested in Triton X-100 micelles. We will argue that such studies have failed to provide an accurate assessment of the activity and of the distinct function of these enzymes in mammalian cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Expression cloning and characterization of a novel adipocyte long chain fatty acid transport protein.

              Long chain fatty acids (LCFAs) are an important energy substrate used by cardiac myocytes and other cells, but the mechanism whereby these molecules cross the plasma membrane is poorly understood. We used an expression cloning strategy and a cDNA library from 3T3-L1 adipocytes to identify a cDNA that, when expressed in cultured cells, augments uptake of LCFAs. This cDNA encodes a novel 646 amino acid fatty acid transport protein (FATP) with six predicted membrane-spanning regions and that is integrally associated with membranes. Immunocytochemistry and subcellular fractionation of 3T3-L1 adipocytes show that FATP is localized to the plasma membrane. We propose that FATP is a plasma membrane transporter for LCFAs.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                June 2013
                June 2013
                6 June 2013
                : 9
                : 6
                : e1003401
                Affiliations
                [1 ]Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
                [2 ]University of Maryland, School of Dentistry, Baltimore, Maryland, United States of America
                [3 ]Kennedy Krieger Institute and Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
                University of California at Irvine, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: GAB PAW RKE AJS. Performed the experiments: JAN EGV AJS LAF ZP GAB. Analyzed the data: GAB PAW AJS RKE. Contributed reagents/materials/analysis tools: GAB RKE PAW. Wrote the paper: GAB.

                [¤]

                Current address: Department of Pathology, Saint Barnabas Medical Center, Livingston, New Jersey, United States of America.

                Article
                PPATHOGENS-D-12-02884
                10.1371/journal.ppat.1003401
                3675155
                23762027
                1fb18fdf-acc8-464a-986e-dbbde1da2ac2
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 21 November 2012
                : 19 April 2013
                Page count
                Pages: 20
                Funding
                This work was supported by the University of Maryland startup funds (GAB) and SEED grant (GAB and RE), and supported in part by NIH grants HD024061, NS037355, and NS062043 (PAW). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Microbiology
                Virology
                Viral Replication
                Viral Replication Complex
                Molecular Cell Biology
                Membranes and Sorting

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article