22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Cryptococcus neoformans Transcriptome at the Site of Human Meningitis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Cryptococcus neoformans is the leading cause of fungal meningitis worldwide. Previous studies have characterized the cryptococcal transcriptome under various stress conditions, but a comprehensive profile of the C. neoformans transcriptome in the human host has not been attempted. Here, we extracted RNA from yeast cells taken directly from the cerebrospinal fluid (CSF) of two AIDS patients with cryptococcal meningitis prior to antifungal therapy. The patients were infected with strains of C. neoformans var. grubii of molecular type VNI and VNII. Using RNA-seq, we compared the transcriptional profiles of these strains under three environmental conditions ( in vivo CSF, ex vivo CSF, and yeast extract-peptone-dextrose [YPD]). Although we identified a number of differentially expressed genes, single nucleotide variants, and novel genes that were unique to each strain, the overall expression patterns of the two strains were similar under the same environmental conditions. Specifically, yeast cells obtained directly from each patient’s CSF were more metabolically active than cells that were incubated ex vivo in CSF. Compared with growth in YPD, some genes were identified as significantly upregulated in both in vivo and ex vivo CSF, and they were associated with genes previously recognized for contributing to pathogenicity. For example, genes with known stress response functions, such as RIM101, ENA1, and CFO1, were regulated similarly in the two clinical strains. Conversely, many genes that were differentially regulated between the two strains appeared to be transporters. These findings establish a platform for further studies of how this yeast survives and produces disease.

          IMPORTANCE

          Cryptococcus neoformans, an environmental, opportunistic yeast, is annually responsible for an estimated million cases of meningitis and over 600,000 deaths, mostly among HIV-infected patients in sub-Saharan Africa and Asia. Using RNA-seq, we analyzed the gene expression of two strains of C. neoformans obtained from the cerebrospinal fluid (CSF) of infected patients, thus creating a comprehensive snapshot of the yeasts’ genetic responses within the human body. By comparing the gene expression of each clinical strain under three conditions ( in vivo CSF, ex vivo CSF, and laboratory culture), we identified genes and pathways that were uniquely regulated by exposure to CSF and likely crucial for the survival of C. neoformans in the central nervous system. Further analyses revealed genetic diversity between the strains, providing evidence for cryptococcal evolution and strain specificity. This ability to characterize transcription in vivo enables the elucidation of specific genetic responses that promote disease production and progression.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: not found
          • Article: not found

          Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin.

            Proteins contain thiol-bearing cysteine residues that are sensitive to oxidation, and this may interfere with biological function either as 'damage' or in the context of oxidant-dependent signal transduction. Cysteine thiols oxidized to sulphenic acid are generally unstable, either forming a disulphide with a nearby thiol or being further oxidized to a stable sulphinic acid. Cysteine-sulphenic acids and disulphides are known to be reduced by glutathione or thioredoxin in biological systems, but cysteine-sulphinic acid derivatives have been viewed as irreversible protein modifications. Here we identify a yeast protein of relative molecular mass M(r) = 13,000, which we have named sulphiredoxin (identified by the US spelling 'sulfiredoxin', in the Saccharomyces Genome Database), that is conserved in higher eukaryotes and reduces cysteine-sulphinic acid in the yeast peroxiredoxin Tsa1. Peroxiredoxins are ubiquitous thiol-containing antioxidants that reduce hydroperoxides and control hydroperoxide-mediated signalling in mammals. The reduction reaction catalysed by sulphiredoxin requires ATP hydrolysis and magnesium, involving a conserved active-site cysteine residue which forms a transient disulphide linkage with Tsa1. We propose that reduction of cysteine-sulphinic acids by sulphiredoxin involves activation by phosphorylation followed by a thiol-mediated reduction step. Sulphiredoxin is important for the antioxidant function of peroxiredoxins, and is likely to be involved in the repair of proteins containing cysteine-sulphinic acid modifications, and in signalling pathways involving protein oxidation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              FungiDB: an integrated functional genomics database for fungi

              FungiDB (http://FungiDB.org) is a functional genomic resource for pan-fungal genomes that was developed in partnership with the Eukaryotic Pathogen Bioinformatic resource center (http://EuPathDB.org). FungiDB uses the same infrastructure and user interface as EuPathDB, which allows for sophisticated and integrated searches to be performed using an intuitive graphical system. The current release of FungiDB contains genome sequence and annotation from 18 species spanning several fungal classes, including the Ascomycota classes, Eurotiomycetes, Sordariomycetes, Saccharomycetes and the Basidiomycota orders, Pucciniomycetes and Tremellomycetes, and the basal ‘Zygomycete’ lineage Mucormycotina. Additionally, FungiDB contains cell cycle microarray data, hyphal growth RNA-sequence data and yeast two hybrid interaction data. The underlying genomic sequence and annotation combined with functional data, additional data from the FungiDB standard analysis pipeline and the ability to leverage orthology provides a powerful resource for in silico experimentation.
                Bookmark

                Author and article information

                Journal
                mBio
                MBio
                mbio
                mbio
                mBio
                mBio
                American Society of Microbiology (1752 N St., N.W., Washington, DC )
                2150-7511
                4 February 2014
                Jan-Feb 2014
                : 5
                : 1
                : e01087-13
                Affiliations
                [ a ]Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
                [ b ]Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
                [ c ]Department of Microbiology and Medicine, University of Minnesota, Minneapolis, Minnesota, USA
                [ d ]St. George Hospital, London, England
                Author notes
                Address correspondence to John R. Perfect, perfe001@ 123456mc.duke.edu .
                [*]

                Present address: Anastasia P. Litvintseva, Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA.

                Editor Françoise Dromer, Institut Pasteur

                Article
                mBio01087-13
                10.1128/mBio.01087-13
                3950508
                24496797
                1fbcc184-db7f-4323-a58f-29bbf1155e2b
                Copyright © 2014 Chen et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-ShareAlike 3.0 Unported license, which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 17 December 2013
                : 23 December 2013
                Page count
                Pages: 10
                Categories
                Research Article
                Custom metadata
                January/February 2014

                Life sciences
                Life sciences

                Comments

                Comment on this article