5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Nutmeg Extract Increases Skeletal Muscle Mass in Aging Rats Partly via IGF1-AKT-mTOR Pathway and Inhibition of Autophagy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The sarcopenic phenotype is characterized by a reduction of muscle mass, a shift in fiber-type distribution, and reduced satellite cell regeneration. Sarcopenia is still a major challenge to healthy aging. Traditional Indonesian societies in Sulawesi island have been using nutmeg for maintaining health condition during aging. Interestingly, nutmeg has been known to stimulate peroxisome proliferator activated receptors γ (PPAR γ) which may contribute to myogenesis process in cardiac muscle. There is limited information about the role of nutmeg extract into physiological health benefit during aging especially myogenesis process in skeletal muscle. In the present study, we want to explore the potential effect of nutmeg in preserving skeletal muscle mass of aging rats. Aging rats, 80 weeks old, were divided into two groups (control and nutmeg). Nutmeg extract was administered for 12 weeks by gavaging. After treatment, rats were anaesthesized, then soleus and gastrocnemius muscles were collected, weighted, frozen using liquid nitrogen, and stored at -80°C until use. We observed phenomenon that nutmeg increased a little but significant food consumption on week 12, but significant decrease in body weight on weeks 10 and 12 unexpectedly increased significantly in soleus muscle weight ( p<0.05). Nutmeg extract increased significantly gene expression of myogenic differentiation (MyoD), paired box 7 (Pax7), myogenin, myosin heavy chain I (MHC I), and insulin-like growth factor I ( p<0.01) in soleus muscle. Furthermore, nutmeg increased serine/threonine kinase (AKT) protein levels and activation of mammalian target of rapamycin (mTOR), inhibited autophagy activity, and stimulated or at least preserved muscle mass during aging. Taken together, nutmeg extract may increase muscle mass or prevent decrease of muscle wasting in soleus muscle by partly stimulating myogenesis, regeneration process, and preserving muscle mass via IGF-AKT-mTOR pathway leading to inhibition of autophagy activity during aging. This finding may reveal the potential nutmeg benefits as alternative supplement for preserving skeletal muscle mass and preventing sarcopenia in elderly.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Satellite cells are essential for skeletal muscle regeneration: the cell on the edge returns centre stage.

          Following their discovery in 1961, it was speculated that satellite cells were dormant myoblasts, held in reserve until required for skeletal muscle repair. Evidence for this accumulated over the years, until the link between satellite cells and the myoblasts that appear during muscle regeneration was finally established. Subsequently, it was demonstrated that, when grafted, satellite cells could also self-renew, conferring on them the coveted status of 'stem cell'. The emergence of other cell types with myogenic potential, however, questioned the precise role of satellite cells. Here, we review recent recombination-based studies that have furthered our understanding of satellite cell biology. The clear consensus is that skeletal muscle does not regenerate without satellite cells, confirming their pivotal and non-redundant role.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mitochondrial dysfunction and sarcopenia of aging: from signaling pathways to clinical trials.

            Sarcopenia, the age-related loss of muscle mass and function, imposes a dramatic burden on individuals and society. The development of preventive and therapeutic strategies against sarcopenia is therefore perceived as an urgent need by health professionals and has instigated intensive research on the pathophysiology of this syndrome. The pathogenesis of sarcopenia is multifaceted and encompasses lifestyle habits, systemic factors (e.g., chronic inflammation and hormonal alterations), local environment perturbations (e.g., vascular dysfunction), and intramuscular specific processes. In this scenario, derangements in skeletal myocyte mitochondrial function are recognized as major factors contributing to the age-dependent muscle degeneration. In this review, we summarize prominent findings and controversial issues on the contribution of specific mitochondrial processes - including oxidative stress, quality control mechanisms and apoptotic signaling - on the development of sarcopenia. Extramuscular alterations accompanying the aging process with a potential impact on myocyte mitochondrial function are also discussed. We conclude with presenting methodological and safety considerations for the design of clinical trials targeting mitochondrial dysfunction to treat sarcopenia. Special emphasis is placed on the importance of monitoring the effects of an intervention on muscle mitochondrial function and identifying the optimal target population for the trial. This article is part of a Directed Issue entitled: Molecular basis of muscle wasting. Copyright © 2013 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Insulin resistance and sarcopenia: mechanistic links between common co-morbidities.

              Insulin resistance (IR) in skeletal muscle is a key defect mediating the link between obesity and type 2 diabetes, a disease that typically affects people in later life. Sarcopenia (age-related loss of muscle mass and quality) is a risk factor for a number of frailty-related conditions that occur in the elderly. In addition, a syndrome of 'sarcopenic obesity' (SO) is now increasingly recognised, which is common in older people and is applied to individuals that simultaneously show obesity, IR and sarcopenia. Such individuals are at an increased risk of adverse health events compared with those who are obese or sarcopenic alone. However, there are no licenced treatments for sarcopenia or SO, the syndrome is poorly defined clinically and the mechanisms that might explain a common aetiology are not yet well characterised. In this review, we detail the nature and extent of the clinical syndrome, highlight some of the key physiological processes that are dysregulated and discuss some candidate molecular pathways that could be implicated in both metabolic and anabolic defects in skeletal muscle, with an eye towards future therapeutic options. In particular, the potential roles of Akt/mammalian target of rapamycin signalling, AMP-activated protein kinase, myostatin, urocortins and vitamin D are discussed.
                Bookmark

                Author and article information

                Contributors
                Journal
                Evid Based Complement Alternat Med
                Evid Based Complement Alternat Med
                ECAM
                Evidence-based Complementary and Alternative Medicine : eCAM
                Hindawi
                1741-427X
                1741-4288
                2018
                17 December 2018
                17 December 2018
                : 2018
                : 2810840
                Affiliations
                1Physiology Division, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Jatinangor 45363, Indonesia
                2Physiology Molecular Laboratory, Biological Activity Division, Central Laboratory, Universitas Padjadjaran, Jatinangor 45363, Indonesia
                3Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia
                4Geriatric Subdivision, Department of Internal Medicine, Faculty of Medicine-Hasan Sadikin Hospital, Universitas Padjadjaran, Bandung 40161, Indonesia
                5Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia
                Author notes

                Academic Editor: Giuseppe D'Antona

                Author information
                http://orcid.org/0000-0002-7425-915X
                http://orcid.org/0000-0002-2099-1062
                http://orcid.org/0000-0002-8779-6421
                Article
                10.1155/2018/2810840
                6311876
                30647761
                1fd4b57d-5a2e-4e42-9326-7eb854fc70c7
                Copyright © 2018 Yuni Susanti Pratiwi et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 15 August 2018
                : 31 October 2018
                : 29 November 2018
                Funding
                Funded by: Indonesian Ministry of Research, Technology, and Higher Education
                Categories
                Research Article

                Complementary & Alternative medicine
                Complementary & Alternative medicine

                Comments

                Comment on this article