Blog
About

128
views
0
recommends
+1 Recommend
0 collections
    6
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Mass spectrometry (MS) coupled with online separation methods is commonly applied for differential and quantitative profiling of biological samples in metabolomic as well as proteomic research. Such approaches are used for systems biology, functional genomics, and biomarker discovery, among others. An ongoing challenge of these molecular profiling approaches, however, is the development of better data processing methods. Here we introduce a new generation of a popular open-source data processing toolbox, MZmine 2.

          Results

          A key concept of the MZmine 2 software design is the strict separation of core functionality and data processing modules, with emphasis on easy usability and support for high-resolution spectra processing. Data processing modules take advantage of embedded visualization tools, allowing for immediate previews of parameter settings. Newly introduced functionality includes the identification of peaks using online databases, MS n data support, improved isotope pattern support, scatter plot visualization, and a new method for peak list alignment based on the random sample consensus (RANSAC) algorithm. The performance of the RANSAC alignment was evaluated using synthetic datasets as well as actual experimental data, and the results were compared to those obtained using other alignment algorithms.

          Conclusions

          MZmine 2 is freely available under a GNU GPL license and can be obtained from the project website at: http://mzmine.sourceforge.net/. The current version of MZmine 2 is suitable for processing large batches of data and has been applied to both targeted and non-targeted metabolomic analyses.

          Related collections

          Most cited references 25

          • Record: found
          • Abstract: found
          • Article: not found

          KEGG: kyoto encyclopedia of genes and genomes.

           M Kanehisa (2000)
          KEGG (Kyoto Encyclopedia of Genes and Genomes) is a knowledge base for systematic analysis of gene functions, linking genomic information with higher order functional information. The genomic information is stored in the GENES database, which is a collection of gene catalogs for all the completely sequenced genomes and some partial genomes with up-to-date annotation of gene functions. The higher order functional information is stored in the PATHWAY database, which contains graphical representations of cellular processes, such as metabolism, membrane transport, signal transduction and cell cycle. The PATHWAY database is supplemented by a set of ortholog group tables for the information about conserved subpathways (pathway motifs), which are often encoded by positionally coupled genes on the chromosome and which are especially useful in predicting gene functions. A third database in KEGG is LIGAND for the information about chemical compounds, enzyme molecules and enzymatic reactions. KEGG provides Java graphics tools for browsing genome maps, comparing two genome maps and manipulating expression maps, as well as computational tools for sequence comparison, graph comparison and path computation. The KEGG databases are daily updated and made freely available (http://www. genome.ad.jp/kegg/).
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Probability-based protein identification by searching sequence databases using mass spectrometry data

              Several algorithms have been described in the literature for protein identification by searching a sequence database using mass spectrometry data. In some approaches, the experimental data are peptide molecular weights from the digestion of a protein by an enzyme. Other approaches use tandem mass spectrometry (MS/MS) data from one or more peptides. Still others combine mass data with amino acid sequence data. We present results from a new computer program, Mascot, which integrates all three types of search. The scoring algorithm is probability based, which has a number of advantages: (i) A simple rule can be used to judge whether a result is significant or not. This is particularly useful in guarding against false positives. (ii) Scores can be compared with those from other types of search, such as sequence homology. (iii) Search parameters can be readily optimised by iteration. The strengths and limitations of probability-based scoring are discussed, particularly in the context of high throughput, fully automated protein identification.
                Bookmark

                Author and article information

                Journal
                BMC Bioinformatics
                BMC Bioinformatics
                BioMed Central
                1471-2105
                2010
                23 July 2010
                : 11
                : 395
                Affiliations
                [1 ]G0 Cell Unit, Okinawa Institute of Science and Technology (OIST), Onna, Okinawa, Japan
                [2 ]Quantitative Biology and Bioinformatics, VTT Technical Research Centre of Finland, Espoo, Finland
                Article
                1471-2105-11-395
                10.1186/1471-2105-11-395
                2918584
                20650010
                Copyright ©2010 Pluskal et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                Categories
                Software

                Bioinformatics & Computational biology

                Comments

                Comment on this article