135
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Myomaker: A membrane activator of myoblast fusion and muscle formation

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary

          Fusion of myoblasts is essential for the formation of multi-nucleated muscle fibers. However, the identity of myogenic proteins that directly govern this fusion process has remained elusive. Here, we discovered a muscle-specific membrane protein, named Myomaker, that controls myoblast fusion. Myomaker is expressed on the cell surface of myoblasts during fusion and is down-regulated thereafter. Over-expression of Myomaker in myoblasts dramatically enhances fusion and genetic disruption of Myomaker in mice causes perinatal death due to an absence of multi-nucleated muscle fibers. Remarkably, forced expression of Myomaker in fibroblasts promotes fusion with myoblasts, demonstrating the direct participation of this protein in the fusion process. Pharmacologic perturbation of the actin cytoskeleton abolishes the activity of Myomaker, consistent with prior studies implicating actin dynamics in myoblast fusion. These findings reveal a long-sought myogenic fusion protein both necessary and sufficient for mammalian myoblast fusion and provide new insights into the molecular underpinnings of muscle formation.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Heart repair by reprogramming non-myocytes with cardiac transcription factors

          The adult mammalian heart possesses little regenerative potential following injury. Fibrosis due to activation of cardiac fibroblasts impedes cardiac regeneration and contributes to loss of contractile function, pathological remodeling and susceptibility to arrhythmias. Cardiac fibroblasts account for a majority of cells in the heart and represent a potential cellular source for restoration of cardiac function following injury through phenotypic reprogramming to a myocardial cell fate. Here we show that four transcription factors, GATA4, Hand2, MEF2C and Tbx5 can cooperatively reprogram adult mouse tail-tip and cardiac fibroblasts into beating cardiac-like myocytes in vitro. Forced expression of these factors in dividing non-cardiomyocytes in mice reprograms these cells into functional cardiac-like myocytes, improves cardiac function and reduces adverse ventricular remodeling following myocardial infarction. Our results suggest a strategy for cardiac repair through reprogramming fibroblasts resident in the heart with cardiogenic transcription factors or other molecules.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            MyoD and the transcriptional control of myogenesis.

            The basic helix-loop-helix myogenic regulatory factors MyoD, Myf5, myogenin and MRF4 have critical roles in skeletal muscle development. Together with the Mef2 proteins and E proteins, these transcription factors are responsible for coordinating muscle-specific gene expression in the developing embryo. This review highlights recent studies regarding the molecular mechanisms by which the muscle-specific myogenic bHLH proteins interact with other regulatory factors to coordinate gene expression in a controlled and ordered manner.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Myoblast fusion: lessons from flies and mice.

              The fusion of myoblasts into multinucleate syncytia plays a fundamental role in muscle function, as it supports the formation of extended sarcomeric arrays, or myofibrils, within a large volume of cytoplasm. Principles learned from the study of myoblast fusion not only enhance our understanding of myogenesis, but also contribute to our perspectives on membrane fusion and cell-cell fusion in a wide array of model organisms and experimental systems. Recent studies have advanced our views of the cell biological processes and crucial proteins that drive myoblast fusion. Here, we provide an overview of myoblast fusion in three model systems that have contributed much to our understanding of these events: the Drosophila embryo; developing and regenerating mouse muscle; and cultured rodent muscle cells.
                Bookmark

                Author and article information

                Journal
                0410462
                6011
                Nature
                Nature
                Nature
                0028-0836
                1476-4687
                15 July 2013
                18 July 2013
                18 January 2014
                : 499
                : 7458
                : 301-305
                Affiliations
                [1 ]Department of Molecular Biology, University of Texas Southwestern Medical Center Dallas, TX 75390, USA
                [2 ]Department of Internal Medicine, University of Texas Southwestern Medical Center Dallas, TX 75390, USA
                Author notes
                Correspondence and requests for materials should be addressed to E.N.O. ( eric.olson@ 123456utsouthwestern.edu )
                Article
                NIHMS488395
                10.1038/nature12343
                3739301
                23868259
                1fe3e003-4944-4164-a48b-62c370681af4

                Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article