1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Aspergillus nidulans alpha-galactosidase of glycoside hydrolase family 36 catalyses the formation of alpha-galacto-oligosaccharides by transglycosylation.

      The Febs Journal
      Wiley

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The alpha-galactosidase from Aspergillus nidulans (AglC) belongs to a phylogenetic cluster containing eukaryotic alpha-galactosidases and alpha-galacto-oligosaccharide synthases of glycoside hydrolase family 36 (GH36). The recombinant AglC, produced in high yield (0.65 g.L(-1) culture) as His-tag fusion in Escherichia coli, catalysed efficient transglycosylation with alpha-(1-->6) regioselectivity from 40 mm 4-nitrophenol alpha-d-galactopyranoside, melibiose or raffinose, resulting in a 37-74% yield of 4-nitrophenol alpha-D-Galp-(1-->6)-D-Galp, alpha-D-Galp-(1-->6)-alpha-D-Galp-(1-->6)-D-Glcp and alpha-D-Galp-(1-->6)-alpha-D-Galp-(1-->6)-D-Glcp-(alpha1-->beta2)-d-Fruf (stachyose), respectively. Furthermore, among 10 monosaccharide acceptor candidates (400 mm) and the donor 4-nitrophenol alpha-D-galactopyranoside (40 mm), alpha-(1-->6) linked galactodisaccharides were also obtained with galactose, glucose and mannose in high yields of 39-58%. AglC did not transglycosylate monosaccharides without the 6-hydroxymethyl group, i.e. xylose, L-arabinose, L-fucose and L-rhamnose, or with axial 3-OH, i.e. gulose, allose, altrose and L-rhamnose. Structural modelling using Thermotoga maritima GH36 alpha-galactosidase as the template and superimposition of melibiose from the complex with human GH27 alpha-galactosidase supported that recognition at subsite +1 in AglC presumably requires a hydrogen bond between 3-OH and Trp358 and a hydrophobic environment around the C-6 hydroxymethyl group. In addition, successful transglycosylation of eight of 10 disaccharides (400 mm), except xylobiose and arabinobiose, indicated broad specificity for interaction with the +2 subsite. AglC thus transferred alpha-galactosyl to 6-OH of the terminal residue in the alpha-linked melibiose, maltose, trehalose, sucrose and turanose in 6-46% yield and the beta-linked lactose, lactulose and cellobiose in 28-38% yield. The product structures were identified using NMR and ESI-MS and five of the 13 identified products were novel, i.e. alpha-D-Galp-(1-->6)-D-Manp; alpha-D-Galp-(1-->6)-beta-D-Glcp-(1-->4)-D-Glcp; alpha-D-Galp-(1-->6)-beta-D-Galp-(1-->4)-D-Fruf; alpha-D-Galp-(1-->6)-D-Glcp-(alpha1-->alpha1)-D-Glcp; and alpha-D-Galp-(1-->6)-alpha-D-Glcp-(1-->3)-D-Fruf.

          Related collections

          Author and article information

          Journal
          20681989
          10.1111/j.1742-4658.2010.07763.x

          Comments

          Comment on this article

          scite_