Blog
About

0
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Retrospective whole-genome sequencing analysis distinguished PFGE and drug-resistance-matched retail meat and clinical Salmonella isolates

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references 35

          • Record: found
          • Abstract: found
          • Article: not found

          Genotyping using whole-genome sequencing is a realistic alternative to surveillance based on phenotypic antimicrobial susceptibility testing.

          Antimicrobial susceptibility testing of bacterial isolates is essential for clinical diagnosis, to detect emerging problems and to guide empirical treatment. Current phenotypic procedures are sometimes associated with mistakes and may require further genetic testing. Whole-genome sequencing (WGS) may soon be within reach even for routine surveillance and clinical diagnostics. The aim of this study was to evaluate WGS as a routine tool for surveillance of antimicrobial resistance compared with current phenotypic procedures. Antimicrobial susceptibility tests were performed on 200 isolates originating from Danish pigs, covering four bacterial species. Genomic DNA was purified from all isolates and sequenced as paired-end reads on the Illumina platform. The web servers ResFinder and MLST (www.genomicepidemiology.org) were used to identify acquired antimicrobial resistance genes and MLST types (where MLST stands for multilocus sequence typing). ResFinder results were compared with phenotypic antimicrobial susceptibility testing results using EUCAST epidemiological cut-off values and MLST types. A total of 3051 different phenotypic tests were performed; 482 led to the categorizing of isolates as resistant and 2569 as susceptible. Seven cases of disagreement between tested and predicted susceptibility were observed, six of which were related to spectinomycin resistance in Escherichia coli. Correlation between MLST type and resistance profiles was only observed in Salmonella Typhimurium, where isolates belonging to sequence type (ST) 34 were more resistant than ST19 isolates. High concordance (99.74%) between phenotypic and predicted antimicrobial susceptibility was observed. Thus, antimicrobial resistance testing based on WGS is an alternative to conventional phenotypic methods.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Outbreak-associated Salmonella enterica Serotypes and Food Commodities, United States, 1998–2008

            Salmonella enterica infections are transmitted not only by animal-derived foods but also by vegetables, fruits, and other plant products. To clarify links between Salmonella serotypes and specific foods, we examined the diversity and predominance of food commodities implicated in outbreaks of salmonellosis during 1998–2008. More than 80% of outbreaks caused by serotypes Enteritidis, Heidelberg, and Hadar were attributed to eggs or poultry, whereas >50% of outbreaks caused by serotypes Javiana, Litchfield, Mbandaka, Muenchen, Poona, and Senftenberg were attributed to plant commodities. Serotypes Typhimurium and Newport were associated with a wide variety of food commodities. Knowledge about these associations can help guide outbreak investigations and control measures.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Salmonella serotype determination utilizing high-throughput genome sequencing data.

              Serotyping forms the basis of national and international surveillance networks for Salmonella, one of the most prevalent foodborne pathogens worldwide (1-3). Public health microbiology is currently being transformed by whole-genome sequencing (WGS), which opens the door to serotype determination using WGS data. SeqSero (www.denglab.info/SeqSero) is a novel Web-based tool for determining Salmonella serotypes using high-throughput genome sequencing data. SeqSero is based on curated databases of Salmonella serotype determinants (rfb gene cluster, fliC and fljB alleles) and is predicted to determine serotype rapidly and accurately for nearly the full spectrum of Salmonella serotypes (more than 2,300 serotypes), from both raw sequencing reads and genome assemblies. The performance of SeqSero was evaluated by testing (i) raw reads from genomes of 308 Salmonella isolates of known serotype; (ii) raw reads from genomes of 3,306 Salmonella isolates sequenced and made publicly available by GenomeTrakr, a U.S. national monitoring network operated by the Food and Drug Administration; and (iii) 354 other publicly available draft or complete Salmonella genomes. We also demonstrated Salmonella serotype determination from raw sequencing reads of fecal metagenomes from mice orally infected with this pathogen. SeqSero can help to maintain the well-established utility of Salmonella serotyping when integrated into a platform of WGS-based pathogen subtyping and characterization.
                Bookmark

                Author and article information

                Journal
                Microbiology
                Microbiology Society
                1350-0872
                1465-2080
                March 01 2019
                March 01 2019
                : 165
                : 3
                : 270-286
                Affiliations
                [1 ] 1​Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania, USA
                [2 ] 2​Pennsylvania Department of Health, Harrisburg, Pennsylvania, USA
                [3 ] 3​Center for Food Safety and Applied Nutrition (CFSAN), Food and Drug Administration (FDA), College Park, Maryland, USA
                [4 ] 4​E. coli Reference Center, The Pennsylvania State University, University Park, Pennsylvania, USA
                Article
                10.1099/mic.0.000768
                © 2019

                Comments

                Comment on this article