16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Intraoperative Microelectrode Recordings in Substantia Nigra Pars Reticulata in Anesthetized Rats

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The Substantia Nigra pars reticulata (SNr) is a promising target for deep brain stimulation (DBS) to treat the gait and postural disturbances in Parkinson’s disease (PD). Positioning the DBS electrode within the SNr is critical for the development of preclinical models of SNr DBS to investigate underlying mechanisms. However, a complete characterization of intraoperative microelectrode recordings in the SNr to guide DBS electrode placement is lacking. In this study, we recorded extracellular single-unit activity in anesthetized rats at multiple locations in the medial SNr (mSNr), lateral SNr (lSNr), and the Ventral Tegmental Area (VTA). Immunohistochemistry and fluorescently dyed electrodes were used to map neural recordings to neuroanatomy. Neural recordings were analyzed in the time domain (i.e., firing rate, interspike interval (ISI) correlation, ISI variance, regularity, spike amplitude, signal-to-noise ratio, half-width, asymmetry, and latency) and the frequency domain (i.e., spectral power in frequency bands of interest). Spike amplitude decreased and ISI correlation increased in the mSNr versus the lSNr. Spike amplitude, signal-to-noise ratio, and ISI correlation increased in the VTA versus the mSNr. ISI correlation increased in the VTA versus the lSNr. Spectral power in the VTA increased versus: (1) the mSNr in the 20–30 Hz band and (2) the lSNr in the 20–40 Hz band. No significant differences were observed between structures for any other feature analyzed. Our results shed light on the heterogeneity of the SNr and suggest electrophysiological features to promote precise targeting of SNr subregions during stereotaxic surgery.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering.

          This study introduces a new method for detecting and sorting spikes from multiunit recordings. The method combines the wavelet transform, which localizes distinctive spike features, with superparamagnetic clustering, which allows automatic classification of the data without assumptions such as low variance or gaussian distributions. Moreover, an improved method for setting amplitude thresholds for spike detection is proposed. We describe several criteria for implementation that render the algorithm unsupervised and fast. The algorithm is compared to other conventional methods using several simulated data sets whose characteristics closely resemble those of in vivo recordings. For these data sets, we found that the proposed algorithm outperformed conventional methods.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Levodopa Is a Double-Edged Sword for Balance and Gait in People With Parkinson's Disease.

            The effects of levodopa on balance and gait function in people with Parkinson's disease (PD) is controversial. This study compared the relative responsiveness to l-dopa on six domains of balance and gait: postural sway in stance; gait pace; dynamic stability; gait initiation; arm swing; and turning in people with mild and severe PD, with and without dyskinesia.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Effects of pedunculopontine nucleus area stimulation on gait disorders in Parkinson's disease.

              Gait disturbances are frequent and disabling in advanced Parkinson's disease. These symptoms respond poorly to usual medical and surgical treatments but were reported to be improved by stimulation of the pedunculopontine nucleus. We studied the effects of stimulating the pedunculopontine nucleus area in six patients with severe freezing of gait, unresponsive to levodopa and subthalamic nucleus stimulation. Electrodes were implanted bilaterally in the pedunculopontine nucleus area. Electrode placement was checked by postoperative magnetic resonance imaging. The primary outcome measures were a composite gait score, freezing of gait questionnaire score and duration of freezing episodes occurring during a walking protocol at baseline and one-year follow-up. A double-blind cross-over study was carried out from months 4 to 6 after surgery with or without pedunculopontine nucleus area stimulation. At one-year follow-up, the duration of freezing episodes under off-drug condition improved, as well as falls related to freezing. The other primary outcome measures did not significantly change, nor did the results during the double-blind evaluation. Individual results showed major improvement of all gait measures in one patient, moderate improvement of some tests in four patients and global worsening in one patient. Stimulation frequency ranged between 15 and 25 Hz. Oscillopsia and limb myoclonus could hinder voltage increase. No serious adverse events occurred. Although freezing of gait can be improved by low-frequency electrical stimulation of the pedunculopontine nucleus area in some patients with Parkinson's disease our overall results are disappointing compared to the high levels of expectation raised by previous open label studies. Further controlled studies are needed to determine whether optimization of patient selection, targeting and setting of stimulation parameters might improve the outcome to a point that could transform this experimental approach to a treatment with a reasonable risk-benefit ratio.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Neurosci
                Front Neurosci
                Front. Neurosci.
                Frontiers in Neuroscience
                Frontiers Media S.A.
                1662-4548
                1662-453X
                29 April 2020
                2020
                : 14
                : 367
                Affiliations
                Department of Biomedical Engineering, Stevens Institute of Technology , Hoboken, NJ, United States
                Author notes

                Edited by: Reinhold Scherer, University of Essex, United Kingdom

                Reviewed by: Adolfo Ramirez-Zamora, University of Florida Health, United States; Chadwick Boulay, The Ottawa Hospital, Canada

                *Correspondence: George C. McConnell, george.mcconnell@ 123456stevens.edu

                This article was submitted to Neuroprosthetics, a section of the journal Frontiers in Neuroscience

                Article
                10.3389/fnins.2020.00367
                7201294
                32410946
                1ff1d5d2-99ba-40ab-917d-abf8b7412987
                Copyright © 2020 Li and McConnell.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 26 September 2019
                : 25 March 2020
                Page count
                Figures: 4, Tables: 0, Equations: 0, References: 43, Pages: 9, Words: 0
                Funding
                Funded by: National Institute of Neurological Disorders and Stroke 10.13039/100000065
                Award ID: R21-NS-085539
                Categories
                Neuroscience
                Brief Research Report

                Neurosciences
                deep brain stimulation,parkinson’s disease,intraoperative microelectrode recordings,action potentials,substantia nigra pars reticulata

                Comments

                Comment on this article