36
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      High diversity stabilizes the thermal resilience of pollinator communities in intensively managed grasslands

      research-article
      1 , a , 1
      Nature Communications
      Nature Publishing Group

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The resilience of ecosystems depends on the diversity of species and their specific responses to environmental variation. Here we show that the diversity of climatic responses across species contributes to a higher projected resilience of species-rich pollinator communities in real-world ecosystems despite land-use intensification. We determined the thermal niche of 511 pollinator species (flies, bees, beetles and butterflies) in 40 grasslands. Species in intensively used grasslands have broader thermal niches and are also more complementary in their thermal optima. The observed increase in thermal resilience with land-use intensification is mainly driven by the dominant flies that prefer cooler temperatures and compensate for losses of other taxa. Temperature explained 84% of the variation in pollinator activity across species and sites. Given the key role of temperature, quantifying the diversity of thermal responses within functional groups is a promising approach to assess the vulnerability of ecosystems to land-use intensification and climate change.

          Abstract

          How variation in species responses to climate may influence the resilience of ecological communities to environmental change is not fully understood. Here, the authors characterize the thermal niches of insect pollinator communities and show that resilience increases along a gradient of land-use intensity.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found

          Crop pollination from native bees at risk from agricultural intensification.

          Ecosystem services are critical to human survival; in selected cases, maintaining these services provides a powerful argument for conserving biodiversity. Yet, the ecological and economic underpinnings of most services are poorly understood, impeding their conservation and management. For centuries, farmers have imported colonies of European honey bees (Apis mellifera) to fields and orchards for pollination services. These colonies are becoming increasingly scarce, however, because of diseases, pesticides, and other impacts. Native bee communities also provide pollination services, but the amount they provide and how this varies with land management practices are unknown. Here, we document the individual species and aggregate community contributions of native bees to crop pollination, on farms that varied both in their proximity to natural habitat and management type (organic versus conventional). On organic farms near natural habitat, we found that native bee communities could provide full pollination services even for a crop with heavy pollination requirements (e.g., watermelon, Citrullus lanatus), without the intervention of managed honey bees. All other farms, however, experienced greatly reduced diversity and abundance of native bees, resulting in insufficient pollination services from native bees alone. We found that diversity was essential for sustaining the service, because of year-to-year variation in community composition. Continued degradation of the agro-natural landscape will destroy this "free" service, but conservation and restoration of bee habitat are potentially viable economic alternatives for reducing dependence on managed honey bees.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            How does climate warming affect plant-pollinator interactions?

            Climate warming affects the phenology, local abundance and large-scale distribution of plants and pollinators. Despite this, there is still limited knowledge of how elevated temperatures affect plant-pollinator mutualisms and how changed availability of mutualistic partners influences the persistence of interacting species. Here we review the evidence of climate warming effects on plants and pollinators and discuss how their interactions may be affected by increased temperatures. The onset of flowering in plants and first appearance dates of pollinators in several cases appear to advance linearly in response to recent temperature increases. Phenological responses to climate warming may therefore occur at parallel magnitudes in plants and pollinators, although considerable variation in responses across species should be expected. Despite the overall similarities in responses, a few studies have shown that climate warming may generate temporal mismatches among the mutualistic partners. Mismatches in pollination interactions are still rarely explored and their demographic consequences are largely unknown. Studies on multi-species plant-pollinator assemblages indicate that the overall structure of pollination networks probably are robust against perturbations caused by climate warming. We suggest potential ways of studying warming-caused mismatches and their consequences for plant-pollinator interactions, and highlight the strengths and limitations of such approaches.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Loss of functional diversity under land use intensification across multiple taxa.

              Land use intensification can greatly reduce species richness and ecosystem functioning. However, species richness determines ecosystem functioning through the diversity and values of traits of species present. Here, we analyze changes in species richness and functional diversity (FD) at varying agricultural land use intensity levels. We test hypotheses of FD responses to land use intensification in plant, bird, and mammal communities using trait data compiled for 1600+ species. To isolate changes in FD from changes in species richness we compare the FD of communities to the null expectations of FD values. In over one-quarter of the bird and mammal communities impacted by agriculture, declines in FD were steeper than predicted by species number. In plant communities, changes in FD were indistinguishable from changes in species richness. Land use intensification can reduce the functional diversity of animal communities beyond changes in species richness alone, potentially imperiling provisioning of ecosystem services.
                Bookmark

                Author and article information

                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group
                2041-1723
                10 August 2015
                2015
                : 6
                : 7989
                Affiliations
                [1 ]Department of Biology, Technische Universität Darmstadt , Schnittspahnstr. 3, D-64287, Darmstadt, Germany
                Author notes
                Article
                ncomms8989
                10.1038/ncomms8989
                4918356
                26258282
                1ff3f73f-7a09-4ac1-877a-fcd9043a20a3
                Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 04 February 2015
                : 03 July 2015
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article