7
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Are adipocytokines inflammatory or metabolic mediators in patients with inflammatory bowel disease?

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This study examined the adiponectin and leptin levels and insulin resistance (IR) in patients with inflammatory bowel disease (IBD) and the associations between these factors and IBD characteristics. Fasting serum leptin, adiponectin, glucose, and insulin levels, as well as inflammatory parameters, were measured in 105 patients with IBD (49 patients with Crohn’s disease [CD], 56 patients with ulcerative colitis [UC]) and 98 healthy controls [HC]. IR was evaluated using the Homeostatic Model Assessment of Insulin Resistance (HOMA-IR). Disease activity and severity in patients with UC were evaluated using the Truelove–Witts index, and patients with CD were evaluated using the Crohn’s Disease Activity Index. Serum adiponectin levels were found to be significantly lower in patients with CD and UC ( p<0.001). Serum leptin levels were also found to be significantly higher in both the UC and CD groups ( p<0.001). When HOMA-IR levels were compared, no significant difference was detected for either the CD or UC groups compared with the controls. In conclusion, it was shown that leptin levels increased and adiponectin levels decreased in patients with IBD, which is thought to be related to chronic inflammation. The effects of adipocytokines in patients with IBD with inflammatory and metabolic processes need to be investigated in further broader studies.

          Related collections

          Most cited references 34

          • Record: found
          • Abstract: found
          • Article: not found

          Banting lecture 1988. Role of insulin resistance in human disease.

           G M Reaven (1988)
          Resistance to insulin-stimulated glucose uptake is present in the majority of patients with impaired glucose tolerance (IGT) or non-insulin-dependent diabetes mellitus (NIDDM) and in approximately 25% of nonobese individuals with normal oral glucose tolerance. In these conditions, deterioration of glucose tolerance can only be prevented if the beta-cell is able to increase its insulin secretory response and maintain a state of chronic hyperinsulinemia. When this goal cannot be achieved, gross decompensation of glucose homeostasis occurs. The relationship between insulin resistance, plasma insulin level, and glucose intolerance is mediated to a significant degree by changes in ambient plasma free-fatty acid (FFA) concentration. Patients with NIDDM are also resistant to insulin suppression of plasma FFA concentration, but plasma FFA concentrations can be reduced by relatively small increments in insulin concentration. Consequently, elevations of circulating plasma FFA concentration can be prevented if large amounts of insulin can be secreted. If hyperinsulinemia cannot be maintained, plasma FFA concentration will not be suppressed normally, and the resulting increase in plasma FFA concentration will lead to increased hepatic glucose production. Because these events take place in individuals who are quite resistant to insulin-stimulated glucose uptake, it is apparent that even small increases in hepatic glucose production are likely to lead to significant fasting hyperglycemia under these conditions. Although hyperinsulinemia may prevent frank decompensation of glucose homeostasis in insulin-resistant individuals, this compensatory response of the endocrine pancreas is not without its price. Patients with hypertension, treated or untreated, are insulin resistant, hyperglycemic, and hyperinsulinemic. In addition, a direct relationship between plasma insulin concentration and blood pressure has been noted. Hypertension can also be produced in normal rats when they are fed a fructose-enriched diet, an intervention that also leads to the development of insulin resistance and hyperinsulinemia. The development of hypertension in normal rats by an experimental manipulation known to induce insulin resistance and hyperinsulinemia provides further support for the view that the relationship between the three variables may be a causal one.(ABSTRACT TRUNCATED AT 400 WORDS)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance.

            Tumor necrosis factor-alpha (TNF-alpha) is an important mediator of insulin resistance in obesity and diabetes through its ability to decrease the tyrosine kinase activity of the insulin receptor (IR). Treatment of cultured murine adipocytes with TNF-alpha was shown to induce serine phosphorylation of insulin receptor substrate 1 (IRS-1) and convert IRS-1 into an inhibitor of the IR tyrosine kinase activity in vitro. Myeloid 32D cells, which lack endogenous IRS-1, were resistant to TNF-alpha-mediated inhibition of IR signaling, whereas transfected 32D cells that express IRS-1 were very sensitive to this effect of TNF-alpha. An inhibitory form of IRS-1 was observed in muscle and fat tissues from obese rats. These results indicate that TNF-alpha induces insulin resistance through an unexpected action of IRS-1 to attenuate insulin receptor signaling.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Circulating concentrations of the adipocyte protein adiponectin are decreased in parallel with reduced insulin sensitivity during the progression to type 2 diabetes in rhesus monkeys.

              Adiponectin is an adipose-specific plasma protein whose plasma concentrations are decreased in obese subjects and type 2 diabetic patients. This protein possesses putative antiatherogenic and anti-inflammatory properties. In the current study, we have analyzed the relationship between adiponectin and insulin resistance in rhesus monkeys (Macaca mulatta), which spontaneously develop obesity and which subsequently frequently progress to overt type 2 diabetes. The plasma levels of adiponectin were decreased in obese and diabetic monkeys as in humans. Prospective longitudinal studies revealed that the plasma levels of adiponectin declined at an early phase of obesity and remained decreased after the development of type 2 diabetes. Hyperinsulinemic-euglycemic clamp studies revealed that the obese monkeys with lower plasma adiponectin showed significantly lower insulin-stimulated peripheral glucose uptake (M rate). The plasma levels of adiponectin were significantly correlated to M rate (r = 0.66, P < 0.001). Longitudinally, the plasma adiponectin decreased in parallel to the progression of insulin resistance. No clear association was found between the plasma levels of adiponectin and its mRNA levels in adipose tissue. These results suggest that reduction in circulating adiponectin may be related to the development of insulin resistance.
                Bookmark

                Author and article information

                Journal
                Ther Clin Risk Manag
                Ther Clin Risk Manag
                Therapeutics and Clinical Risk Management
                Therapeutics and Clinical Risk Management
                Dove Medical Press
                1176-6336
                1178-203X
                2017
                30 September 2017
                : 13
                : 1295-1301
                Affiliations
                [1 ]Department of Gastroenterology, Umraniye Education and Training Hospital, Health Sciences University
                [2 ]Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Istanbul Yeni Yuzyil University
                [3 ]Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
                Author notes
                Correspondence: Bedia Cakmakoglu, Istanbul University, Aziz Sancar Institue of Experimental Medicine, Department of Molecular Medicine, Vakif Gureba Street, 34093, Capa, Fatih, Istanbul, Turkey, Tel +90 212 414 2000 ext 33305, Fax +90 212 532 4171, Email bedia@ 123456istanbul.edu.tr
                Article
                tcrm-13-1295
                10.2147/TCRM.S140618
                5628835
                © 2017 Kahraman et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                Categories
                Original Research

                Medicine

                leptin, ulcerative colitis, adiponectin, insulin resistance, crohn’s disease

                Comments

                Comment on this article