The properties of turbulence subgrid-scale stresses are studied using experimental data in the far field of a round jet, at a Reynolds number of R λ ≈ 310. Measurements are performed using two-dimensional particle displacement velocimetry. Three elements of the subgrid-scale stress tensor are calculated using planar filtering of the data. Using a priori testing, eddy-viscosity closures are shown to display very little correlation with the real stresses, in accord with earlier findings based on direct numerical simulations at lower Reynolds numbers. Detailed analysis of subgrid energy fluxes and of the velocity field decomposed into logarithmic bands leads to a new similarity subgrid-scale model. It is based on the ‘resolved stress’ tensor L ij , which is obtained by filtering products of resolved velocities at a scale equal to twice the grid scale. The correlation coefficient of this model with the real stress is shown to be substantially higher than that of the eddy-viscosity closures. It is shown that mixed models display similar levels of correlation. During the a priori test, care is taken to only employ resolved data in a fashion that is consistent with the information that would be available during large-eddy simulation. The influence of the filter shape on the correlation is documented in detail, and the model is compared to the original similarity model of Bardina et al. (1980). A relationship between L ij and a nonlinear subgrid-scale model is established. In order to control the amount of kinetic energy backscatter, which could potentially lead to numerical instability, an ad hoc weighting function that depends on the alignment between L ij and the strain-rate tensor, is introduced. A ‘dynamic’ version of the model is shown, based on the data, to allow a self-consistent determination of the coefficient. In addition, all tensor elements of the model are shown to display the correct scaling with normal distance near a solid boundary.