0
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Curcumin Reduces Neuroinflammation and Improves the Impairments of Anesthetics on Learning and Memory by Regulating the Expression of miR-181a-5p

      , ,

      Neuroimmunomodulation

      S. Karger AG

      Curcumin, Isoflurane, miR-181a-5p, Anesthetics, Neuroinflammation

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective: The purpose of this study was to explore the role of curcumin (Cur) in isoflurane (ISO)-induced learning and memory dysfunction in Sprague-Dawley rats and further elucidate the mechanism of the protective effect produced by Cur. Methods: Rat models of cognitive impairment were established by inhaling 3% ISO. The Morris water maze test was used to assess the cognitive function of rats. ELISA and qRT-PCR were used to analyze the protein levels of pro-inflammatory cytokines and expression levels of miR-181a-5p, respectively. Results: Cur significantly improved the ISO-induced cognitive dysfunction in rats and alleviated the ISO-induced neuroinflammation. miR-181a-5p was overexpressed in ISO-induced rats, while Cur treatment significantly reduced the expression of miR-181a-5p. Overexpression of miR-181a-5p promoted the cognitive impairment and the release of inflammatory cytokines and reversed the neuroprotective effect of Cur. Conclusion: Cur has a protective effect on ISO-induced cognitive dysfunction, which may be achieved by regulating the expression of miR-181a-5p.

          Related collections

          Most cited references 28

          • Record: found
          • Abstract: found
          • Article: not found

          Early exposure to anesthesia and learning disabilities in a population-based birth cohort.

          Anesthetic drugs administered to immature animals may cause neurohistopathologic changes and alterations in behavior. The authors studied association between anesthetic exposure before age 4 yr and the development of reading, written language, and math learning disabilities (LD). This was a population-based, retrospective birth cohort study. The educational and medical records of all children born to mothers residing in five townships of Olmsted County, Minnesota, from 1976 to 1982 and who remained in the community at 5 yr of age were reviewed to identify children with LD. Cox proportional hazards regression was used to calculate hazard ratios for anesthetic exposure as a predictor of LD, adjusting for gestational age at birth, sex, and birth weight. Of the 5,357 children in this cohort, 593 received general anesthesia before age 4 yr. Compared with those not receiving anesthesia (n = 4,764), a single exposure to anesthesia (n = 449) was not associated with an increased risk of LD (hazard ratio = 1.0; 95% confidence interval, 0.79-1.27). However, children receiving two anesthetics (n = 100) or three or more anesthetics (n = 44) were at increased risk for LD (hazard ratio = 1.59; 95% confidence interval, 1.06-2.37, and hazard ratio = 2.60; 95% confidence interval, 1.60-4.24, respectively). The risk for LD increased with longer cumulative duration of anesthesia exposure (expressed as a continuous variable) (P = 0.016). Exposure to anesthesia was a significant risk factor for the later development of LD in children receiving multiple, but not single anesthetics. These data cannot reveal whether anesthesia itself may contribute to LD or whether the need for anesthesia is a marker for other unidentified factors that contribute to LD.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Neonatal exposure to sevoflurane induces abnormal social behaviors and deficits in fear conditioning in mice.

            Neonatal exposure to anesthetics that block N-methyl-D-aspartate receptors and/or hyperactivate gamma-aminobutyric acid type A receptor has been shown to cause neuronal degeneration in the developing brain, leading to functional deficits later in adulthood. The authors investigated whether exposure of neonatal mice to inhaled sevoflurane causes deficits in social behavior as well as learning disabilities. Six-day-old C57BL/6 mice were exposed to 3% sevoflurane for 6 h. Activated cleaved caspase-3 immunohistochemical staining was used for detection of apoptosis. Cognitive functions were tested by pavlovian conditioned fear test. Social behavior was tested by social recognition and interaction tests. Neonatal exposure to sevoflurane significantly increased the number of apoptotic cells in the brain immediately after anesthesia. It caused persistent learning deficits later in adulthood as evidenced by decreased freezing response in both contextual and cued fear conditioning. The social recognition test demonstrated that mice with neonatal exposure to sevoflurane did not develop social memory. Furthermore, these mice showed decreased interactions with a social target compared with controls in the social interaction test, indicating a social interaction deficit. The authors did not attribute these abnormalities in social behavior to impairments of general interest in novelty or olfactory sensation, because they did not detect significant differences in the test for novel inanimate object interaction or for olfaction. This study shows that exposure of neonatal mice to inhaled sevoflurane could cause not only learning deficits but also abnormal social behaviors resembling autism spectrum disorder.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Isoflurane differentially affects neurogenesis and long-term neurocognitive function in 60-day-old and 7-day-old rats.

              Anesthetic agents cause cell death in the developing rodent brain and long-term, mostly hippocampal-dependent, neurocognitive dysfunction. However, a causal link between these findings has not been shown. Postnatal hippocampal neurogenesis affects hippocampal function into adulthood; therefore, the authors tested the hypothesis that isoflurane affects long-term neurocognitive function via an effect on dentate gyrus neurogenesis. The S-phase marker 5-bromodeoxyuridine was administered at various times before, during, and after 4 h of isoflurane given to postnatal day (P)60 and P7 rats to assess dentate gyrus progenitor proliferation, early neuronal lineage selection, and long-term survival of new granule cell neurons. Fear conditioning and spatial reference memory was tested at various intervals from 2 weeks until 8 months after anesthesia. In P60 rats, isoflurane increased early neuronal differentiation as assessed by BrdU/NeuroD costaining, decreased progenitor proliferation for 1 day, and subsequently increased progenitor proliferation 5-10 days after anesthesia. In P7 rats, isoflurane did not induce neuronal lineage selection but decreased progenitor proliferation until at least 5 days after anesthesia. Isoflurane improved spatial reference memory of P60 rats long-term, but it caused a delayed-onset, progressive, persistent hippocampal deficit in P7 rats in fear conditioning and spatial reference memory tasks. The authors conclude that isoflurane differentially affects both neurogenesis and long-term neurocognitive function in P60 and P7 rats. Neurogenesis might mediate the long-term neurocognitive outcome after isoflurane at different ages.
                Bookmark

                Author and article information

                Journal
                NIM
                Neuroimmunomodulation
                10.1159/issn.1021-7401
                Neuroimmunomodulation
                S. Karger AG
                1021-7401
                1423-0216
                2021
                May 2021
                13 April 2021
                : 28
                : 1
                : 38-46
                Affiliations
                Department of Anesthesiology, Laiyang Central Hospital, Yantai City, China
                Article
                514548 Neuroimmunomodulation 2021;28:38–46
                10.1159/000514548
                33849031
                © 2021 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                Page count
                Figures: 5, Pages: 9
                Categories
                Research Article

                Comments

                Comment on this article