39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Residential Ambient Traffic in Relation to Childhood Pneumonia among Urban Children in Shandong, China: A Cross-Sectional Study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Pneumonia is a leading cause of childhood death. Few studies have investigated associations between residential ambient environmental exposures and pneumonia. In January–April 2015, we conducted a cross-sectional study in Shandong Province (China) and collected 9597 (response rate: 78.7%) parent-reported questionnaires for 3–6-year-old children from 69 urban kindergartens. We then selected 5640 children who had never changed residence since birth and examined associations between residential ambient traffic-related facilities and childhood pneumonia considering residential characteristics. Prevalence of doctor-diagnosed pneumonia during lifetime-ever was 25.9%. In the multivariate logistic regression analyses, residence close to a main traffic road (adjusted odds ratio, 95% confidence interval: 1.23, 1.08–1.40) and automobile 4S shop (1.76, 1.16–2.67) within 200 m, residence close to a filling station within 100 m (1.71, 1.10–2.65; reference: >200 m), as well as having a ground car park in the residential community (1.24, 1.08–1.42) were significantly associated with childhood pneumonia. The cumulative numbers of these traffic-related facilities had a positive dose-response relationship with the increased odds of childhood pneumonia. These associations and dose-response relationships were stronger among boys and among children with worse bedroom ventilation status during the night. Associations of residence close to the main traffic road and ground car parks in the residential community with childhood pneumonia were stronger among children living in the 1st–3rd floors than those living on higher floors. Similar results were found in the two-level (kindergarten-child) logistic regression analyses. Our findings indicate that living near traffic-related facilities is likely a risk factor for childhood pneumonia among urban children. The child’s sex, bedroom floor level, and bedroom ventilation could modify associations of ambient traffic-related facilities with childhood pneumonia.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          Effect of exposure to traffic on lung development from 10 to 18 years of age: a cohort study.

          Whether local exposure to major roadways adversely affects lung-function growth during the period of rapid lung development that takes place between 10 and 18 years of age is unknown. This study investigated the association between residential exposure to traffic and 8-year lung-function growth. In this prospective study, 3677 children (mean age 10 years [SD 0.44]) participated from 12 southern California communities that represent a wide range in regional air quality. Children were followed up for 8 years, with yearly lung-function measurements recorded. For each child, we identified several indicators of residential exposure to traffic from large roads. Regression analysis was used to establish whether 8-year growth in lung function was associated with local traffic exposure, and whether local traffic effects were independent of regional air quality. Children who lived within 500 m of a freeway (motorway) had substantial deficits in 8-year growth of forced expiratory volume in 1 s (FEV(1), -81 mL, p=0.01 [95% CI -143 to -18]) and maximum midexpiratory flow rate (MMEF, -127 mL/s, p=0.03 [-243 to -11), compared with children who lived at least 1500 m from a freeway. Joint models showed that both local exposure to freeways and regional air pollution had detrimental, and independent, effects on lung-function growth. Pronounced deficits in attained lung function at age 18 years were recorded for those living within 500 m of a freeway, with mean percent-predicted 97.0% for FEV1 (p=0.013, relative to >1500 m [95% CI 94.6-99.4]) and 93.4% for MMEF (p=0.006 [95% CI 89.1-97.7]). Local exposure to traffic on a freeway has adverse effects on children's lung development, which are independent of regional air quality, and which could result in important deficits in attained lung function in later life.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            A Growing Role for Gender Analysis in Air Pollution Epidemiology

            Objective Epidemiologic studies of air pollution effects on respiratory health report significant modification by sex, although results are not uniform. Importantly, it remains unclear whether modifications are attributable to socially derived gendered exposures, to sex-linked physiological differences, or to some interplay thereof. Gender analysis, which aims to disaggregate social from biological differences between males and females, may help to elucidate these possible sources of effect modification. Data sources and data extraction A PubMed literature search was performed in July 2009, using the terms “respiratory” and any of “sex” or “gender” or “men and women” or “boys and girls” and either “PM2.5” (particulate matter ≥ 2.5 μm in aerodynamic diameter) or “NO2” (nitrogen dioxide). I reviewed the identified studies, and others cited therein, to summarize current evidence of effect modification, with attention to authors’ interpretation of observed differences. Owing to broad differences in exposure mixes, outcomes, and analytic techniques, with few studies examining any given combination thereof, meta-analysis was not deemed appropriate at this time. Data synthesis More studies of adults report stronger effects among women, particularly for older persons or where using residential exposure assessment. Studies of children suggest stronger effects among boys in early life and among girls in later childhood. Conclusions The qualitative review describes possible sources of difference in air pollution response between women and men, which may vary by life stage, coexposures, hormonal status, or other factors. The sources of observed effect modifications remain unclear, although gender analytic approaches may help to disentangle gender and sex differences in pollution response. A framework for incorporating gender analysis into environmental epidemiology is offered, along with several potentially useful methods from gender analysis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ventilation rates and health: multidisciplinary review of the scientific literature.

              The scientific literature through 2005 on the effects of ventilation rates on health in indoor environments has been reviewed by a multidisciplinary group. The group judged 27 papers published in peer-reviewed scientific journals as providing sufficient information on both ventilation rates and health effects to inform the relationship. Consistency was found across multiple investigations and different epidemiologic designs for different populations. Multiple health endpoints show similar relationships with ventilation rate. There is biological plausibility for an association of health outcomes with ventilation rates, although the literature does not provide clear evidence on particular agent(s) for the effects. Higher ventilation rates in offices, up to about 25 l/s per person, are associated with reduced prevalence of sick building syndrome (SBS) symptoms. The limited available data suggest that inflammation, respiratory infections, asthma symptoms and short-term sick leave increase with lower ventilation rates. Home ventilation rates above 0.5 air changes per hour (h(-1)) have been associated with a reduced risk of allergic manifestations among children in a Nordic climate. The need remains for more studies of the relationship between ventilation rates and health, especially in diverse climates, in locations with polluted outdoor air and in buildings other than offices. Ventilation with outdoor air plays an important role influencing human exposures to indoor pollutants. This review and assessment indicates that increasing ventilation rates above currently adopted standards and guidelines should result in reduced prevalence of negative health outcomes. Building operators and designers should avoid low ventilation rates unless alternative effective measures, such as source control or air cleaning, are employed to limit indoor pollutant levels. © 2011 John Wiley & Sons A/S.
                Bookmark

                Author and article information

                Journal
                Int J Environ Res Public Health
                Int J Environ Res Public Health
                ijerph
                International Journal of Environmental Research and Public Health
                MDPI
                1661-7827
                1660-4601
                25 May 2018
                June 2018
                : 15
                : 6
                : 1076
                Affiliations
                [1 ]School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China; changjingcj2004@ 123456163.com
                [2 ]Department of Thermal Energy and Power Engineering, Shandong Jiaotong University, Jinan 250357, China
                [3 ]Department of Building Science, Tsinghua University, Beijing 100084, China; lw1987@ 123456tsinghua.edu.cn
                [4 ]Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Tsinghua University, Beijing 100084, China
                Author notes
                Article
                ijerph-15-01076
                10.3390/ijerph15061076
                6025011
                29799501
                2016aff7-924f-4a04-afe3-fa838a1c4858
                © 2018 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 09 April 2018
                : 22 May 2018
                Categories
                Article

                Public health
                traffic,residence,pneumonia,china,children
                Public health
                traffic, residence, pneumonia, china, children

                Comments

                Comment on this article