Blog
About

6
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Pulmonary hemodynamic profile in chronic obstructive pulmonary disease

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          Few data are available in regards to the prevalence of pulmonary hypertension (PH) in the broad spectrum of COPD. This study was aimed at assessing the prevalence of PH in a cohort of COPD patients across the severity of airflow limitation, and reporting the hemodynamic characteristics at rest and during exercise.

          Methods

          We performed a retrospective analysis on COPD patients who underwent right-heart catheterization in our center with measurements obtained at rest (n=139) and during exercise (n=85). PH was defined as mean pulmonary artery pressure (mPAP) ≥25 mmHg and pulmonary capillary wedge pressure <15 mmHg. Exercise-induced PH (EIPH) was defined by a ratio of ΔmPAP/Δcardiac output >3.

          Results

          PH was present in 25 patients (18%). According to the Global Initiative for Chronic Obstructive Lung Disease (GOLD) classification, PH prevalence in GOLD 2 was 7% (3 patients); 25% (14 patients) in GOLD 3; and 22% (8 patients) in GOLD 4. Severe PH (mPAP ≥35 mmHg) was identified in four patients (2.8%). Arterial partial oxygen pressure was the outcome most strongly associated with PH ( r=−0.29, P<0.001). EIPH was observed in 60 patients (71%) and had a similar prevalence in both GOLD 2 and 3, and was present in all GOLD 4 patients. Patients with PH had lower cardiac index during exercise than patients without PH (5.0±1.2 versus 6.7±1.4 L/min/m 2, respectively; P=0.001).

          Conclusion

          PH has a similar prevalence in COPD patients with severe and very-severe airflow limitation, being associated with the presence of arterial hypoxemia. In contrast, EIPH is highly prevalent, even in moderate COPD, and might contribute to limiting exercise tolerance.

          Related collections

          Most cited references 34

          • Record: found
          • Abstract: found
          • Article: not found

          Prevalence of COPD in Spain: impact of undiagnosed COPD on quality of life and daily life activities.

          This study aimed to determine the prevalence of chronic obstructive pulmonary disease (COPD) in Spain and identify the level of undiagnosed disease and its impact on health-related quality of life (HRQL) and activities of daily living (ADL). A population-based sample of 4274 adults aged 40-80 years was surveyed. They were invited to answer a questionnaire and undergo prebrochodilator and postbronchodilator spirometry. COPD was defined as a postbronchodilator FEV(1)/FVC (forced expiratory volume in 1 s/forced vital capacity) ratio of <0.70. For 3802 participants with good-quality postbronchodilator spirometry, the overall prevalence of COPD was 10.2% (95% CI 9.2% to 11.1%) and was higher in men (15.1%) than in women (5.6%). The prevalence of COPD stage II or higher was 4.4% (95%CI; 3.8%-5.1%). The prevalence of COPD increased with age and with cigarette smoking and was higher in those with a low educational level. A previous diagnosis of COPD was reported by only 27% of those with COPD. Diagnosed patients had more severe disease, higher cumulative tobacco consumption and more severely impaired HRQL compared with undiagnosed subjects. However, even patients with undiagnosed COPD stage I+ already showed impairment in HRQL and in some aspects of ADL compared with participants without COPD. The prevalence of COPD in individuals between 40 and 80 years of age in Spain is 10.2% and increases with age, tobacco consumption and lower educational levels. The rate of diagnosised COPD is very high and undiagnosed individuals with COPD already have a significant impairment in HRQL and ADL.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pulmonary arterial pressure during rest and exercise in healthy subjects: a systematic review.

            According to current guidelines, pulmonary arterial hypertension (PAH) is diagnosed when mean pulmonary arterial pressure (Ppa) exceeds 25 mmHg at rest or 30 mmHg during exercise. Issues that remain unclear are the classification of Ppa values 30 mmHg during exercise is always pathological. We performed a comprehensive literature review and analysed all accessible data obtained by right heart catheter studies from healthy individuals to determine normal Ppa at rest and during exercise. Data on 1,187 individuals from 47 studies in 13 countries were included. Data were stratified for sex, age, geographical origin, body position and exercise level. Ppa at rest was 14.0+/-3.3 mmHg and this value was independent of sex and ethnicity. Resting Ppa was slightly influenced by posture (supine 14.0+/-3.3 mmHg, upright 13.6+/-3.1 mmHg) and age ( or = 50 yrs: 14.7+/-4.0 mmHg). Ppa during exercise was dependent on exercise level and age. During mild exercise, Ppa was 19.4+/-4.8 mmHg in subjects aged or = 50 yrs (p<0.001). In conclusion, while Ppa at rest is virtually independent of age and rarely exceeds 20 mmHg, exercise Ppa is age-related and frequently exceeds 30 mmHg, especially in elderly individuals, which makes it difficult to define normal Ppa values during exercise.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pulmonary hypertension in chronic lung diseases.

              Chronic obstructive lung disease (COPD) and diffuse parenchymal lung diseases (DPLD), including idiopathic pulmonary fibrosis (IPF) and sarcoidosis, are associated with a high incidence of pulmonary hypertension (PH), which is linked with exercise limitation and a worse prognosis. Patients with combined pulmonary fibrosis and emphysema (CPFE) are particularly prone to the development of PH. Echocardiography and right heart catheterization are the principal modalities for the diagnosis of COPD and DPLD. For discrimination between group 1 PH patients with concomitant respiratory abnormalities and group 3 PH patients (PH caused by lung disease), patients should be transferred to a center with expertise in both PH and lung diseases for comprehensive evaluation. The task force encompassing the authors of this article provided criteria for this discrimination and suggested using the following definitions for group 3 patients, as exemplified for COPD, IPF, and CPFE: COPD/IPF/CPFE without PH (mean pulmonary artery pressure [mPAP] <25 mm Hg); COPD/IPF/CPFE with PH (mPAP ≥25 mm Hg); PH-COPD, PH-IPF, and PH-CPFE); COPD/IPF/CPFE with severe PH (mPAP ≥35 mm Hg or mPAP ≥25 mm Hg with low cardiac index [CI <2.0 l/min/m(2)]; severe PH-COPD, severe PH-IPF, and severe PH-CPFE). The "severe PH group" includes only a minority of chronic lung disease patients who are suspected of having strong general vascular abnormalities (remodeling) accompanying the parenchymal disease and with evidence of an exhausted circulatory reserve rather than an exhausted ventilatory reserve underlying the limitation of exercise capacity. Exertional dyspnea disproportionate to pulmonary function tests, low carbon monoxide diffusion capacity, and rapid decline of arterial oxygenation upon exercise are typical clinical features of this subgroup with poor prognosis. Studies evaluating the effect of pulmonary arterial hypertension drugs currently not approved for group 3 PH patients should focus on this severe PH group, and for the time being, these patients should be transferred to expert centers for individualized patient care.
                Bookmark

                Author and article information

                Journal
                Int J Chron Obstruct Pulmon Dis
                Int J Chron Obstruct Pulmon Dis
                International Journal of COPD
                International Journal of Chronic Obstructive Pulmonary Disease
                Dove Medical Press
                1176-9106
                1178-2005
                2015
                14 July 2015
                : 10
                : 1313-1320
                Affiliations
                [1 ]Department of PulmonaryMedicine, Hospital Clínic-Institut d’Investigacions Biomèdiques AugustPi iSunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
                [2 ]Centrode Investigación Biomédica enRed de Enfermedades Respiratorias (CIBERES), Madrid, Spain
                [3 ]Biostatistics and Data Management Core Facility, Hospital Clínic-Institut d’Investigacions Biomèdiques August Pi iSunyer (IDIBAPS), Biostatistics Unit, Schoolof Medicine, Universitat Autònomade Barcelona, Barcelona, Spain
                Author notes
                Correspondence: Joan A Barberà, Department of Pulmonary Medicine, Hospital Clínic, Villarroel 170, 08036 Barcelona, Spain, Tel +34 932 275 747, Fax +34 932 255 455, Email jbarbera@ 123456clinic.ub.es
                Article
                copd-10-1313
                10.2147/COPD.S78180
                4507485
                © 2015 Portillo et al. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0) License

                The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                Categories
                Original Research

                Respiratory medicine

                pulmonary hypertension, right heart catheterization, cardiac index, gold

                Comments

                Comment on this article