36
views
0
recommends
+1 Recommend
0 collections
    1
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Human dental pulp stem cells can differentiate into Schwann cells and promote and guide neurite outgrowth in an aligned tissue-engineered collagen construct in vitro

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In the present study, we evaluated the differentiation potential of human dental pulp stem cells (hDPSCs) toward Schwann cells, together with their functional capacity with regard to myelination and support of neurite outgrowth in vitro. Successful Schwann cell differentiation was confirmed at the morphological and ultrastructural level by transmission electron microscopy. Furthermore, compared to undifferentiated hDPSCs, immunocytochemistry and ELISA tests revealed increased glial marker expression and neurotrophic factor secretion of differentiated hDPSCs (d-hDPSCs), which promoted survival and neurite outgrowth in 2-dimensional dorsal root ganglia cultures. In addition, neurites were myelinated by d-hDPSCs in a 3-dimensional collagen type I hydrogel neural tissue construct. This engineered construct contained aligned columns of d-hDPSCs that supported and guided neurite outgrowth. Taken together, these findings provide the first evidence that hDPSCs are able to undergo Schwann cell differentiation and support neural outgrowth in vitro, proposing them to be good candidates for cell-based therapies as treatment for peripheral nerve injury.—Martens, W., Sanen, K., Georgiou, M., Struys, T., Bronckaers, A., Ameloot, M., Phillips, J., Lambrichts, I. Human dental pulp stem cells can differentiate into Schwann cells and promote and guide neurite outgrowth in an aligned tissue-engineered collagen construct in vitro.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Adult rat and human bone marrow stromal cells differentiate into neurons.

          Bone marrow stromal cells exhibit multiple traits of a stem cell population. They can be greatly expanded in vitro and induced to differentiate into multiple mesenchymal cell types. However, differentiation to non-mesenchymal fates has not been demonstrated. Here, adult rat stromal cells were expanded as undifferentiated cells in culture for more than 20 passages, indicating their proliferative capacity. A simple treatment protocol induced the stromal cells to exhibit a neuronal phenotype, expressing neuron-specific enolase, NeuN, neurofilament-M, and tau. With an optimal differentiation protocol, almost 80% of the cells expressed NSE and NF-M. The refractile cell bodies extended long processes terminating in typical growth cones and filopodia. The differentiating cells expressed nestin, characteristic of neuronal precursor stem cells, at 5 hr, but the trait was undetectable at 6 days. In contrast, expression of trkA, the nerve growth factor receptor, persisted from 5 hr through 6 days. Clonal cell lines, established from single cells, proliferated, yielding both undifferentiated and neuronal cells. Human marrow stromal cells subjected to this protocol also differentiated into neurons. Consequently, adult marrow stromal cells can be induced to overcome their mesenchymal commitment and may constitute an abundant and accessible cellular reservoir for the treatment of a variety of neurologic diseases. Copyright 2000 Wiley-Liss, Inc.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis.

            Neural crest cells are multipotential stem cells that contribute extensively to vertebrate development and give rise to various cell and tissue types. Determination of the fate of mammalian neural crest has been inhibited by the lack of appropriate markers. Here, we make use of a two-component genetic system for indelibly marking the progeny of the cranial neural crest during tooth and mandible development. In the first mouse line, Cre recombinase is expressed under the control of the Wnt1 promoter as a transgene. Significantly, Wnt1 transgene expression is limited to the migrating neural crest cells that are derived from the dorsal CNS. The second mouse line, the ROSA26 conditional reporter (R26R), serves as a substrate for the Cre-mediated recombination. Using this two-component genetic system, we have systematically followed the migration and differentiation of the cranial neural crest (CNC) cells from E9.5 to 6 weeks after birth. Our results demonstrate, for the first time, that CNC cells contribute to the formation of condensed dental mesenchyme, dental papilla, odontoblasts, dentine matrix, pulp, cementum, periodontal ligaments, chondrocytes in Meckel's cartilage, mandible, the articulating disc of temporomandibular joint and branchial arch nerve ganglia. More importantly, there is a dynamic distribution of CNC- and non-CNC-derived cells during tooth and mandibular morphogenesis. These results are a first step towards a comprehensive understanding of neural crest cell migration and differentiation during mammalian craniofacial development. Furthermore, this transgenic model also provides a new tool for cell lineage analysis and genetic manipulation of neural-crest-derived components in normal and abnormal embryogenesis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Engineering hydrogels as extracellular matrix mimics.

              Extracellular matrix (ECM) is a complex cellular environment consisting of proteins, proteoglycans, and other soluble molecules. ECM provides structural support to mammalian cells and a regulatory milieu with a variety of important cell functions, including assembling cells into various tissues and organs, regulating growth and cell-cell communication. Developing a tailored in vitro cell culture environment that mimics the intricate and organized nanoscale meshwork of native ECM is desirable. Recent studies have shown the potential of hydrogels to mimic native ECM. Such an engineered native-like ECM is more likely to provide cells with rational cues for diagnostic and therapeutic studies. The research for novel biomaterials has led to an extension of the scope and techniques used to fabricate biomimetic hydrogel scaffolds for tissue engineering and regenerative medicine applications. In this article, we detail the progress of the current state-of-the-art engineering methods to create cell-encapsulating hydrogel tissue constructs as well as their applications in in vitro models in biomedicine.
                Bookmark

                Author and article information

                Journal
                FASEB J
                FASEB J
                fasebj
                fasebj
                FASEB
                The FASEB Journal
                Federation of American Societies for Experimental Biology (Bethesda, MD, USA )
                0892-6638
                1530-6860
                April 2014
                April 2014
                : 28
                : 4
                : 1634-1643
                Affiliations
                [* ]Department of Functional Morphology and
                []Department of Biophysics, Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium;
                []Department of Life, Health, and Chemical Sciences, The Open University, Milton Keynes, UK;
                [§ ]Department of Biochemical Engineering and
                []Department of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, London, UK
                Author notes
                [1]

                These authors contributed equally to this work.

                [2 ]Correspondence: Hasselt University, Campus Diepenbeek, Biomedical Research Institute, Lab of Histology, Agoralaan, Bldg. C, Office C011, 3590 Diepenbeek, Belgium. E-mail: wendy.martens@ 123456uhasselt.be
                Article
                13-243980
                10.1096/fj.13-243980
                4046066
                24352035
                20183520-3bc2-4b42-9a78-2e7c706e6b32
                © FASEB

                This is an Open Access article distributed under the terms of the Creative Commons Attribution 3.0 Unported (CC BY 3.0) ( http://creativecommons.org/licenses/by/3.0/deed.en_US) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 15 October 2013
                : 9 December 2013
                Categories
                Research Communications

                Molecular biology
                neural regeneration,nerve repair,glial cell,myelination,cellular hydrogel
                Molecular biology
                neural regeneration, nerve repair, glial cell, myelination, cellular hydrogel

                Comments

                Comment on this article