23
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Bacterial and fungal gut communities of Agrilus mali at different developmental stages and fed different diets

      research-article
      1 , 2 , 1 , 1 ,
      Scientific Reports
      Nature Publishing Group UK

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Agrilus mali (Coleoptera: Buprestidae) is an invasive wood borer pest that has caused considerable damage to the Xinjiang wild fruit forest. In this study, we investigated the bacterial and fungal intestinal microbial communities of A. mali during different developmental stages, including larvae, pupae and newly eclosed adults or fed different diets (leaves of Malus halliana and Malus pumila) using Illumina MiSeq high-throughput sequencing technology. The results showed that microbial alpha diversity first increased and then decreased during the developmental stages, with the most dominant bacteria and fungi exhibiting the dynamic patterns “Decrease”, “Increase” and “Fluctuation”. With respect to the different diets, the bacterial communities were similar between the newly eclosed adults and adults fed M. pumila leaves, while the structure of the fungal communities showed great differences between newly eclosed adults and adults fed different diets. Through a co-correlation network analysis, we observed complex microbial interactions among bacterial and fungal taxa that were associated with potential diverse functions and intricate biological processes in the intestinal microbiota of A. mali. Overall, the results of this study demonstrated that the invasive insect A. mali harbours diverse, dynamic, and presumably multifunctional microbial communities, an understanding of which could improve our ability to develop more effective management approaches to control A. mali.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          The gut bacteria of insects: nonpathogenic interactions.

          The diversity of the Insecta is reflected in the large and varied microbial communities inhabiting the gut. Studies, particularly with termites and cockroaches, have focused on the nutritional contributions of gut bacteria in insects living on suboptimal diets. The indigenous gut bacteria, however, also play a role in withstanding the colonization of the gut by non-indigenous species including pathogens. Gut bacterial consortia adapt by the transfer of plasmids and transconjugation between bacterial strains, and some insect species provide ideal conditions for bacterial conjugation, which suggests that the gut is a "hot spot" for gene transfer. Genomic analysis provides new avenues for the study of the gut microbial community and will reveal the molecular foundations of the relationships between the insect and its microbiome. In this review the intestinal bacteria is discussed in the context of developing our understanding of symbiotic relationships, of multitrophic interactions between insects and plant or animal host, and in developing new strategies for controlling insect pests.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The emerging role for bacteria in lignin degradation and bio-product formation.

            The microbial degradation of lignin has been well studied in white-rot and brown-rot fungi, but is much less well studied in bacteria. Recent published work suggests that a range of soil bacteria, often aromatic-degrading bacteria, are able to break down lignin. The enzymology of bacterial lignin breakdown is currently not well understood, but extracellular peroxidase and laccase enzymes appear to be involved. There are also reports of aromatic-degrading bacteria isolated from termite guts, though there are conflicting reports on the ability of termite gut micro-organisms to break down lignin. If biocatalytic routes for lignin breakdown could be developed, then lignin represents a potentially rich source of renewable aromatic chemicals. Copyright © 2010 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              From structure to function: the ecology of host-associated microbial communities.

              In the past several years, we have witnessed an increased interest in understanding the structure and function of the indigenous microbiota that inhabits the human body. It is hoped that this will yield novel insight into the role of these complex microbial communities in human health and disease. What is less appreciated is that this recent activity owes a great deal to the pioneering efforts of microbial ecologists who have been studying communities in non-host-associated environments. Interactions between environmental microbiologists and human microbiota researchers have already contributed to advances in our understanding of the human microbiome. We review the work that has led to these recent advances and illustrate some of the possible future directions for continued collaboration between these groups of researchers. We discuss how the application of ecological theory to the human-associated microbiota can lead us past descriptions of community structure and toward an understanding of the functions of the human microbiota. Such an approach may lead to a shift in the prevention and treatment of human diseases that involves conservation or restoration of the normal community structure and function of the host-associated microbiota.
                Bookmark

                Author and article information

                Contributors
                limenglou@hotmail.com
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                23 October 2018
                23 October 2018
                2018
                : 8
                : 15634
                Affiliations
                [1 ]ISNI 0000 0004 1760 4150, GRID grid.144022.1, Laboratory of Forestry Pests Biological Control, College of Forestry, , Northwest A&F University, ; Yangling, Shaanxi 712100 China
                [2 ]ISNI 0000 0001 2256 9319, GRID grid.11135.37, College of Urban and Environmental Sciences, , Peking University, ; Beijing, 100871 China
                Article
                34127
                10.1038/s41598-018-34127-x
                6199299
                30353073
                201ddb8a-7c74-40d1-9d4b-3cfbe422bdab
                © The Author(s) 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 13 March 2018
                : 3 October 2018
                Categories
                Article
                Custom metadata
                © The Author(s) 2018

                Uncategorized
                Uncategorized

                Comments

                Comment on this article