40
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Compressive Strength and Setting Time of MTA and Portland Cement Associated with Different Radiopacifying Agents

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective. The aim of this study was to evaluate the compressive strength and setting time of MTA and Portland cement (PC) associated with bismuth oxide (BO), zirconium oxide (ZO), calcium tungstate (CT), and strontium carbonate (SC). Methods. For the compressive strength test, specimens were evaluated in an EMIC DL 2000 apparatus at 0.5 mm/min speed. For evaluation of setting time, each material was analyzed using Gilmore-type needles. The statistical analysis was performed with ANOVA and the Tukey tests, at 5% significance. Results. After 24 hours, the highest values were found for PC and PC + ZO. At 21 days, PC + BO showed the lowest compressive strength among all the groups. The initial setting time was greater for PC. The final setting time was greater for PC and PC + CT, and MTA had the lowest among the evaluated materials ( P < 0.05). Conclusion. The results showed that all radiopacifying agents tested may potentially be used in association with PC to replace BO.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Hydration mechanisms of mineral trioxide aggregate.

          To report the hydration mechanism of white mineral trioxide aggregate (White MTA, Dentsply, Tulsa Dental Products, Tulsa, OK, USA). The chemical constitution of white MTA was studied by viewing the powder in polished sections under the scanning electron microscope (SEM). The hydration of both white MTA and white Portland cement (PC) was studied by characterizing cement hydrates viewed under the SEM, plotting atomic ratios, performing quantitative energy dispersive analyses with X-ray (EDAX) and by calculation of the amount of anhydrous clinker minerals using the Bogue calculation. Un-hydrated MTA was composed of impure tri-calcium and di-calcium silicate and bismuth oxide. The aluminate phase was scarce. On hydration the white PC produced a dense structure made up of calcium silicate hydrate, calcium hydroxide, monosulphate and ettringite as the main hydration products. The un-reacted cement grain was coated with a layer of hydrated cement. In contrast MTA produced a porous structure on hydration. Levels of ettringite and monosulphate were low. Bismuth oxide was present as un-reacted powder but also incorporated with the calcium silicate hydrate. White MTA was deficient in alumina suggesting that the material was not prepared in a rotary kiln. On hydration this affected the production of ettringite and monosulphate usually formed on hydration of PC. The bismuth affected the hydration mechanism of MTA; it formed part of the structure of C-S-H and also affected the precipitation of calcium hydroxide in the hydrated paste. The microstructure of hydrated MTA would likely be weaker when compared with that of PC.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Comparison of the physical and mechanical properties of MTA and portland cement.

            This study evaluated and compared the pH, radiopacity, setting time, solubility, dimensional change, and compressive strength of ProRoot MTA (PMTA), ProRoot MTA (tooth colored formula) (WMTA), white Portland cement (WP), and ordinary Portland cement (OP). The results showed that PMTA and Portland cement have very similar physical properties. However, the radiopacity of Portland cement is much lower than that of PMTA. The compressive strength of PMTA was greater than Portland cement at 28 days. The major constituent of PMTA is Portland cement. Given the low cost of Portland cement and similar properties when compared to PMTA, it is reasonable to consider Portland cement as a possible substitute for PMTA in endodontic applications. However, industrially manufactured Portland cement is not approved currently for use in the United States and therefore no clinical recommendation can be made for its use in the human body. Further in vitro and in vivo tests, especially with regards its biocompatibility, should be conducted to ascertain if it meets the FDA requirements for use as a medical device.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Antimicrobial and chemical study of MTA, Portland cement, calcium hydroxide paste, Sealapex and Dycal.

              The objective of this study was to investigate the antimicrobial action of mineral trioxide aggregate (MTA), Portland cement, calcium hydroxide paste (CHP), Sealapex and Dycal. The chemical elements of MTA and two Portland cements were also analyzed. Four standard bacterial strains: Staphylococcus aureus (ATCC 6538), Enterococcus faecalis (ATCC 29212), Pseudomonas aeruginosa (ATCC 27853), Bacillus subtilis (ATCC 6633), one wild fungus, Candida albicans (ICB/USP-562), and one mixture of these were used. Thirty Petri plates with 20 ml of BHI agar were inoculated with 0.1 ml of the experimental suspensions. Three cavities, each one measuring 4 mm in depth and 4 mm in diameter, were made in each agar plate using a copper coil and then completely filled with the product to be tested. The plates were pre-incubated for 1 h at environmental temperature followed by incubation at 37 degrees C for 48 h. The diameters of the zones of microbial inhibition were then measured. Samples from diffusion and inhibition halos were extracted from each plate and immersed in 7 ml BHI broth and incubated at 37 degrees C for 48 h. Analyses of chemical elements present in MTA and in two samples of Portland cement were performed with a fluorescence spectrometer Rx. The results showed that the antimicrobial activity of CHP was superior to those of MTA, Portland cement, Sealapex and Dycal, for all microorganisms tested, presenting inhibition zones of 6-9.5 mm and diffusion zones of 10-18 mm. MTA, Portland cement, and Sealapex presented only diffusion zones and among these, Sealapex produced the largest zone. Dycal did not show inhibition or diffusion zones. Portland cements contain the same chemical elements as MTA except that MTA also contains bismuth.
                Bookmark

                Author and article information

                Journal
                ISRN Dent
                ISRN Dent
                ISRN.DENTISTRY
                ISRN Dentistry
                International Scholarly Research Network
                2090-4371
                2090-438X
                2012
                23 August 2012
                : 2012
                : 898051
                Affiliations
                1Department of Restorative Dentistry, Araraquara Dental School, São Paulo State University (UNESP), 14801-385 Araraquara, SP, Brazil
                2Department of Dentistry, Bauru Dental School, University of São Paulo (USP), 17012-901 Bauru, SP, Brazil
                Author notes
                *Mario Tanomaru-Filho: tanomaru@ 123456uol.com.br

                Academic Editors: G. H. Sperber and J. Walters

                Article
                10.5402/2012/898051
                3432372
                22957262
                2022cbeb-0a9d-4c69-9cec-16dd89ebd7e7
                Copyright © 2012 Mario Tanomaru-Filho et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 12 June 2012
                : 10 July 2012
                Categories
                Research Article

                Dentistry
                Dentistry

                Comments

                Comment on this article