36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Neuregulin 1: a prime candidate for research into gene-environment interactions in schizophrenia? Insights from genetic rodent models

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Schizophrenia is a multi-factorial disease characterized by a high heritability and environmental risk factors. In recent years, an increasing number of researchers worldwide have started investigating the “two-hit hypothesis” of schizophrenia predicting that genetic and environmental risk factors (GxE) interactively cause the development of the disorder. This work is starting to produce valuable new animal models and reveal novel insights into the pathophysiology of schizophrenia. This mini review will focus on recent advancements in the field made by challenging mutant and transgenic rodent models for the schizophrenia candidate gene neuregulin 1 ( NRG1) with particular environmental factors. It will outline results obtained from mouse and rat models for various Nrg1 isoforms/isoform types (e.g., transmembrane domain Nrg1, Type II Nrg1), which have been exposed to different forms of stress (acute versus chronic, restraint versus social) and housing conditions (standard laboratory versus minimally enriched housing). These studies suggest Nrg1 as a prime candidate for GxE interactions in schizophrenia rodent models and that the use of rodent models will enable a better understanding of GxE interactions and the underlying mechanisms.

          Related collections

          Most cited references97

          • Record: found
          • Abstract: found
          • Article: not found

          The adolescent brain and age-related behavioral manifestations.

          L Spear (2000)
          To successfully negotiate the developmental transition between youth and adulthood, adolescents must maneuver this often stressful period while acquiring skills necessary for independence. Certain behavioral features, including age-related increases in social behavior and risk-taking/novelty-seeking, are common among adolescents of diverse mammalian species and may aid in this process. Reduced positive incentive values from stimuli may lead adolescents to pursue new appetitive reinforcers through drug use and other risk-taking behaviors, with their relative insensitivity to drugs supporting comparatively greater per occasion use. Pubertal increases in gonadal hormones are a hallmark of adolescence, although there is little evidence for a simple association of these hormones with behavioral change during adolescence. Prominent developmental transformations are seen in prefrontal cortex and limbic brain regions of adolescents across a variety of species, alterations that include an apparent shift in the balance between mesocortical and mesolimbic dopamine systems. Developmental changes in these stressor-sensitive regions, which are critical for attributing incentive salience to drugs and other stimuli, likely contribute to the unique characteristics of adolescence.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress.

            Mice experiencing repeated aggression develop a long-lasting aversion to social contact, which can be normalized by chronic, but not acute, administration of antidepressant. Using viral-mediated, mesolimbic dopamine pathway-specific knockdown of brain-derived neurotrophic factor (BDNF), we showed that BDNF is required for the development of this experience-dependent social aversion. Gene profiling in the nucleus accumbens indicates that local knockdown of BDNF obliterates most of the effects of repeated aggression on gene expression within this circuit, with similar effects being produced by chronic treatment with antidepressant. These results establish an essential role for BDNF in mediating long-term neural and behavioral plasticity in response to aversive social experiences.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The environment and schizophrenia.

              Psychotic syndromes can be understood as disorders of adaptation to social context. Although heritability is often emphasized, onset is associated with environmental factors such as early life adversity, growing up in an urban environment, minority group position and cannabis use, suggesting that exposure may have an impact on the developing 'social' brain during sensitive periods. Therefore heritability, as an index of genetic influence, may be of limited explanatory power unless viewed in the context of interaction with social effects. Longitudinal research is needed to uncover gene-environment interplay that determines how expression of vulnerability in the general population may give rise to more severe psychopathology.
                Bookmark

                Author and article information

                Journal
                Front Behav Neurosci
                Front Behav Neurosci
                Front. Behav. Neurosci.
                Frontiers in Behavioral Neuroscience
                Frontiers Media S.A.
                1662-5153
                18 July 2013
                15 August 2013
                2013
                : 7
                : 106
                Affiliations
                [1] 1Neuroscience Research Australia Randwick, NSW, Australia
                [2] 2Schizophrenia Research Institute Darlinghurst, NSW, Australia
                [3] 3School of Medical Sciences, University of New South Wales NSW, Australia
                Author notes

                Edited by: Jonathon C. Arnold, University of Sydney, Australia

                Reviewed by: Akshay Anand, Post Graduate Institute of Medical Education and Research, India; Sara B. Taylor, Arizona State University, USA

                *Correspondence: Tim Karl, Neuroscience Research Australia, Barker St., Randwick, NSW 2031, Australia e-mail: t.karl@ 123456neura.edu.au
                Article
                10.3389/fnbeh.2013.00106
                3744031
                23966917
                202486b7-d05b-45e6-98cb-1f11b5e78a4a
                Copyright © 2013 Karl.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 30 May 2013
                : 29 July 2013
                Page count
                Figures: 0, Tables: 1, Equations: 0, References: 108, Pages: 8, Words: 7180
                Categories
                Neuroscience
                Mini Review Article

                Neurosciences
                schizophrenia,neuregulin 1,gene-environment interactions,mouse,rat,stress,enrichment,housing
                Neurosciences
                schizophrenia, neuregulin 1, gene-environment interactions, mouse, rat, stress, enrichment, housing

                Comments

                Comment on this article