23
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Drug Design, Development and Therapy (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the design and development of drugs, as well as the clinical outcomes, patient safety, and programs targeted at the effective and safe use of medicines. Sign up for email alerts here.

      88,007 Monthly downloads/views I 4.319 Impact Factor I 6.6 CiteScore I 1.12 Source Normalized Impact per Paper (SNIP) I 0.784 Scimago Journal & Country Rank (SJR)

       

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Leflunomide Inhibits Proliferation and Induces Apoptosis via Suppressing Autophagy and PI3K/Akt Signaling Pathway in Human Bladder Cancer Cells

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          Bladder cancer is a lethal human malignancy. Currently, treatment for bladder cancer is limited. The anti-tumor effects of leflunomide have attracted much more concern in multiple human cancers.

          Materials and Methods

          This study evaluated the anti-tumor effects of leflunomide on cell viability, colony formation, apoptosis, and cell cycle in two human bladder carcinoma cell lines, 5637 and T24. Meanwhile, the underlying mechanism including PI3K/Akt signaling pathway and autophagy modulation was also identified.

          Results

          Leflunomide markedly inhibited the growth of both bladder cancer cell lines and induced apoptosis and cell cycle arrest in S phase. The phosphorylation levels of Akt and P70S6K in both cell lines were significantly down-regulated with leflunomide treatment. Furthermore, the deceased formation of autophagosomes and the accumulation of LC3II and P62 suggested the blockade of autophagy by leflunomide. Modulation of autophagy with rapamycin and chloroquine markedly attenuated and enhanced the cytostatic effects of leflunomide, respectively.

          Conclusion

          Leflunomide significantly reduced the cell viability of bladder cancer cells via inducing apoptosis and cell cycle arrest and suppressing the PI3K/Akt signaling pathway. In addition, the blockade of autophagy was observed, and autophagy inhibition enhanced leflunomide-mediating anti-tumor effects. Our data presented here offer novel ideas for comprehensive therapeutic regimes on bladder cancer.

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Bladder cancer.

          Bladder cancer is a complex disease associated with high morbidity and mortality rates if not treated optimally. Awareness of haematuria as the major presenting symptom is paramount, and early diagnosis with individualised treatment and follow-up is the key to a successful outcome. For non-muscle-invasive bladder cancer, the mainstay of treatment is complete resection of the tumour followed by induction and maintenance immunotherapy with intravesical BCG vaccine or intravesical chemotherapy. For muscle-invasive bladder cancer, multimodal treatment involving radical cystectomy with neoadjuvant chemotherapy offers the best chance for cure. Selected patients with muscle-invasive tumours can be offered bladder-sparing trimodality treatment consisting of transurethral resection with chemoradiation. Advanced disease is best treated with systemic cisplatin-based chemotherapy; immunotherapy is emerging as a viable salvage treatment for patients in whom first-line chemotherapy cannot control the disease. Developments in the past 2 years have shed light on genetic subtypes of bladder cancer that might differ from one another in response to various treatments.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Leflunomide: mode of action in the treatment of rheumatoid arthritis.

            Leflunomide is a selective inhibitor of de novo pyrimidine synthesis. In phase II and III clinical trials of active rheumatoid arthritis, leflunomide was shown to improve primary and secondary outcome measures with a satisfactory safety profile. The active metabolite of leflunomide, A77 1726, at low, therapeutically applicable doses, reversibly inhibits dihydroorotate dehydrogenase (DHODH), the rate limiting step in the de novo synthesis of pyrimidines. Unlike other cells, activated lymphocytes expand their pyrimidine pool by approximately eightfold during proliferation; purine pools are increased only twofold. To meet this demand, lymphocytes must use both salvage and de novo synthesis pathways. Thus the inhibition of DHODH by A77 1726 prevents lymphocytes from accumulating sufficient pyrimidines to support DNA synthesis. At higher doses, A77 1726 inhibits tyrosine kinases responsible for early T cell and B cell signalling in the G(0)/G(1) phase of the cell cycle. Because the immunoregulatory effects of A77 1726 occur at doses that inhibit DHODH but not tyrosine kinases, the interruption of de novo pyrimidine synthesis may be the primary mode of action. Recent evidence suggests that the observed anti-inflammatory effects of A77 1726 may relate to its ability to suppress interleukin 1 and tumour necrosis factor alpha selectively over their inhibitors in T lymphocyte/monocyte contact activation. A77 1726 has also been shown to suppress the activation of nuclear factor kappaB, a potent mediator of inflammation when stimulated by inflammatory agents. Continuing research indicates that A77 1726 may downregulate the glycosylation of adhesion molecules, effectively reducing cell-cell contact activation during inflammation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The Role of Surgery in Metastatic Bladder Cancer: A Systematic Review.

              The role of surgery in metastatic bladder cancer (BCa) is unclear.
                Bookmark

                Author and article information

                Journal
                Drug Des Devel Ther
                Drug Des Devel Ther
                DDDT
                dddt
                Drug Design, Development and Therapy
                Dove
                1177-8881
                18 May 2020
                2020
                : 14
                : 1897-1908
                Affiliations
                [1 ]Department of Urology, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College , Wuhu, Anhui Province, People’s Republic of China
                [2 ]Department of Geriatrics, Peking University First Hospital , Beijing, People’s Republic of China
                [3 ]Department of Urology, The First Affiliated Hospital of Anhui Medical University , Hefei, Anhui Province, People’s Republic of China
                [4 ]Department of Urology, Peking University First Hospital , Beijing, People’s Republic of China
                Author notes
                Correspondence: Li Cheng Email chenglibjmu@163.com
                [*]

                These authors contributed equally to this work

                Author information
                http://orcid.org/0000-0002-1291-2168
                Article
                252626
                10.2147/DDDT.S252626
                7244359
                32546957
                2024c52f-b61a-4f02-8b6f-d88f574e103e
                © 2020 Cheng et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                History
                : 05 March 2020
                : 07 May 2020
                Page count
                Figures: 8, References: 32, Pages: 12
                Funding
                Funded by: National Natural Science Foundation of China 10.13039/501100001809
                This study was funded by the National Natural Science Foundation of China (No. 81670617).
                Categories
                Original Research

                Pharmacology & Pharmaceutical medicine
                leflunomide,autophagy,pi3k/akt pathway,anti-tumor,bladder cancer

                Comments

                Comment on this article