21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      MicroRNA-365 regulates IL-1β-induced catabolic factor expression by targeting HIF-2α in primary chondrocytes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Endothelial Per-Arnt-Sim domain protein-1/hypoxia-inducible factor-2α (EPAS-1/ HIF-2α) is a catabolic transcription factor that regulates osteoarthritis (OA)-related cartilage destruction. Here, we examined whether microRNA-365 (miR-365) affects interleukin (IL)-1β-induced expression of catabolic factors in chondrocytes via regulation of HIF-2α. MiR-365 levels were significantly decreased in human OA cartilage relative to normal cartilage. Overexpression of miR-365 significantly suppressed IL-1β-induced expression of HIF-2α in human articular chondrocytes. Pharmacological inhibition of various IL-1β-associated signaling pathways revealed mitogen-activated protein kinase and nuclear factor-κB as the primary pathways driving IL-1β-mediated decreases in miR-365 and subsequent increase in HIF-2α expression. Using a luciferase reporter assay encoding the 3′ untranslated region (UTR) of human HIF-2α mRNA, we showed that overexpression of miR-365 significantly suppressed IL-1β-induced up-regulation of HIF-2α. AGO2 RNA-immunoprecipitation (IP) assay demonstrated that miR-365 and HIF-2α mRNA were enriched in the AGO2-IP fraction in miR-365-transfected primary chondrocytes compared to miR-con-transfected cells, indicating that HIF-2α is a target of miR-365. Furthermore, miR-365 overexpression significantly suppressed IL-1β-induced expression of catabolic factors, including cyclooxygenase-2 and matrix metalloproteinase-1, -3 and -13, in chondrocytes. In pellet culture of primary chondrocytes miR-365 prevented IL-1β-stimulated extracellular matrix loss and matrix metalloproteinase-13 expression. MiR-365 regulates IL-1β-stimulated catabolic effects in human chondrocytes by modulating HIF-2α expression.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Hypoxia-inducible factor-2alpha is a catabolic regulator of osteoarthritic cartilage destruction.

          Osteoarthritic cartilage destruction is caused by an imbalance between anabolic and catabolic factors. Here, we show that hypoxia-inducible factor-2alpha (HIF-2alpha, encoded by EPAS1) is a catabolic transcription factor in the osteoarthritic process. HIF-2alpha directly induces the expression in chondrocytes of genes encoding catabolic factors, including matrix metalloproteinases (MMP1, MMP3, MMP9, MMP12 and MMP13), aggrecanase-1 (ADAMTS4), nitric oxide synthase-2 (NOS2) and prostaglandin-endoperoxide synthase-2 (PTGS2). HIF-2alpha expression was markedly increased in human and mouse osteoarthritic cartilage, and its ectopic expression triggered articular cartilage destruction in mice and rabbits. Moreover, mice transgenic for Epas1 only in chondrocytes showed spontaneous cartilage destruction, whereas heterozygous genetic deletion of Epas1 in mice suppressed cartilage destruction caused by destabilization of the medial meniscus (DMM) or collagenase injection, with concomitant modulation of catabolic factors. Our results collectively demonstrate that HIF-2alpha causes cartilage destruction by regulating crucial catabolic genes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Transcriptional regulation of endochondral ossification by HIF-2alpha during skeletal growth and osteoarthritis development.

            Chondrocyte hypertrophy followed by cartilage matrix degradation and vascular invasion, characterized by expression of type X collagen (COL10A1), matrix metalloproteinase-13 (MMP-13) and vascular endothelial growth factor (VEGF), respectively, are central steps of endochondral ossification during normal skeletal growth and osteoarthritis development. A COL10A1 promoter assay identified hypoxia-inducible factor-2alpha (HIF-2alpha, encoded by EPAS1) as the most potent transactivator of COL10A1. HIF-2alpha enhanced promoter activities of COL10A1, MMP13 and VEGFA through specific binding to the respective hypoxia-responsive elements. HIF-2alpha, independently of oxygen-dependent hydroxylation, was essential for endochondral ossification of cultured chondrocytes and embryonic skeletal growth in mice. HIF-2alpha expression was higher in osteoarthritic cartilages versus nondiseased cartilages of mice and humans. Epas1-heterozygous deficient mice showed resistance to osteoarthritis development, and a functional single nucleotide polymorphism (SNP) in the human EPAS1 gene was associated with knee osteoarthritis in a Japanese population. The EPAS1 promoter assay identified RELA, a nuclear factor-kappaB (NF-kappaB) family member, as a potent inducer of HIF-2alpha expression. Hence, HIF-2alpha is a central transactivator that targets several crucial genes for endochondral ossification and may represent a therapeutic target for osteoarthritis.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The role of the chondrocyte in osteoarthritis.

              M Goldring (2000)
                Bookmark

                Author and article information

                Contributors
                cride02@naver.com
                kimha@hallym.ac.kr
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                20 December 2017
                20 December 2017
                2017
                : 7
                : 17889
                Affiliations
                [1 ]ISNI 0000000404154154, GRID grid.488421.3, Division of rheumatology, Department of Internal Medicine, , Hallym University Sacred Heart Hospital, ; Kyunggi, 431-070 Korea
                [2 ]ISNI 0000 0004 0470 5964, GRID grid.256753.0, Institute for Skeletal Aging, , Hallym University, ; Chunchon, 200-702 Korea
                Article
                18059
                10.1038/s41598-017-18059-6
                5738378
                29263346
                203868f6-be77-4d13-92f3-e0b1c141b762
                © The Author(s) 2017

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 27 June 2017
                : 5 December 2017
                Categories
                Article
                Custom metadata
                © The Author(s) 2017

                Uncategorized
                Uncategorized

                Comments

                Comment on this article