72
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mediator regulates non-coding RNA transcription at fission yeast centromeres

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          In fission yeast, centromeric heterochromatin is necessary for the fidelity of chromosome segregation. Propagation of heterochromatin in dividing cells requires RNA interference (RNAi) and transcription of centromeric repeats by RNA polymerase II during the S phase of the cell cycle.

          Results

          We found that the Med8-Med18-Med20 submodule of the Mediator complex is required for the transcriptional regulation of native centromeric dh and dg repeats and for the silencing of reporter genes inserted in centromeric heterochromatin. Mutations in the Med8-Med18-Med20 submodule did not alter Mediator occupancy at centromeres; however, they led to an increased recruitment of RNA polymerase II to centromeres and reduced levels of centromeric H3K9 methylation accounting for the centromeric desilencing. Further, we observed that Med18 and Med20 were required for efficient processing of dh transcripts into siRNA. Consistent with defects in centromeric heterochromatin, cells lacking Med18 or Med20 displayed elevated rates of mitotic chromosome loss.

          Conclusions

          Our data demonstrate a role for the Med8-Med18-Med20 Mediator submodule in the regulation of non-coding RNA transcription at Schizosaccharomyces pombe centromeres. In wild-type cells this submodule limits RNA polymerase II access to the heterochromatic DNA of the centromeres. Additionally, the submodule may act as an assembly platform for the RNAi machinery or regulate the activity of the RNAi pathway. Consequently, Med8-Med18-Med20 is required for silencing of centromeres and proper mitotic chromosome segregation.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The BioGRID Interaction Database: 2008 update

          The Biological General Repository for Interaction Datasets (BioGRID) database (http://www.thebiogrid.org) was developed to house and distribute collections of protein and genetic interactions from major model organism species. BioGRID currently contains over 198 000 interactions from six different species, as derived from both high-throughput studies and conventional focused studies. Through comprehensive curation efforts, BioGRID now includes a virtually complete set of interactions reported to date in the primary literature for both the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe. A number of new features have been added to the BioGRID including an improved user interface to display interactions based on different attributes, a mirror site and a dedicated interaction management system to coordinate curation across different locations. The BioGRID provides interaction data with monthly updates to Saccharomyces Genome Database, Flybase and Entrez Gene. Source code for the BioGRID and the linked Osprey network visualization system is now freely available without restriction.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Comprehensive analysis of heterochromatin- and RNAi-mediated epigenetic control of the fission yeast genome.

            The organization of eukaryotic genomes into distinct structural and functional domains is important for the regulation and transduction of genetic information. Here, we investigated heterochromatin and euchromatin profiles of the entire fission yeast genome and explored the role of RNA interference (RNAi) in genome organization. Histone H3 methylated at Lys4, which defines euchromatin, was not only distributed across most of the chromosomal landscape but was also present at the centromere core, the site of kinetochore assembly. In contrast, histone H3 methylated at Lys9 and its interacting protein Swi6/HP1, which define heterochromatin, coated extended domains associated with a variety of repeat elements and small islands corresponding to meiotic genes. Notably, RNAi components were distributed throughout all these heterochromatin domains, and their localization depended on Clr4/Suv39h histone methyltransferase. Sequencing of small interfering RNAs (siRNAs) associated with the RITS RNAi effector complex identified hot spots of siRNAs, which mapped to a diverse array of elements in these RNAi-heterochromatin domains. We found that Clr4/Suv39h predominantly silenced repeat elements whose derived transcripts, transcribed mainly by RNA polymerase II, serve as a source for siRNAs. Our analyses also uncover an important role for the RNAi machinery in maintaining genomic integrity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Requirement of heterochromatin for cohesion at centromeres.

              Centromeres are heterochromatic in many organisms, but the mitotic function of this silent chromatin remains unknown. During cell division, newly replicated sister chromatids must cohere until anaphase when Scc1/Rad21-mediated cohesion is destroyed. In metazoans, chromosome arm cohesins dissociate during prophase, leaving centromeres as the only linkage before anaphase. It is not known what distinguishes centromere cohesion from arm cohesion. Fission yeast Swi6 (a Heterochromatin protein 1 counterpart) is a component of silent heterochromatin. Here we show that this heterochromatin is specifically required for cohesion between sister centromeres. Swi6 is required for association of Rad21-cohesin with centromeres but not along chromosome arms and, thus, acts to distinguish centromere from arm cohesion. Therefore, one function of centromeric heterochromatin is to attract cohesin, thereby ensuring sister centromere cohesion and proper chromosome segregation.
                Bookmark

                Author and article information

                Journal
                Epigenetics Chromatin
                Epigenetics Chromatin
                Epigenetics & Chromatin
                BioMed Central
                1756-8935
                2012
                21 November 2012
                : 5
                : 19
                Affiliations
                [1 ]Department of Biology, University of Copenhagen, BioCenter, Ole Maaløes vej 5, 2200, Copenhagen, N, Denmark
                Article
                1756-8935-5-19
                10.1186/1756-8935-5-19
                3541127
                23171760
                203dbce2-4c4e-4535-b062-f5350a989d04
                Copyright ©2012 Thorsen et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 25 August 2012
                : 1 November 2012
                Categories
                Research

                Genetics
                rna pol ii,chromatin,s. pombe,mediator,centromere,chromosome segregation
                Genetics
                rna pol ii, chromatin, s. pombe, mediator, centromere, chromosome segregation

                Comments

                Comment on this article