18
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Submit your digital health research with an established publisher
      - celebrating 25 years of open access

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Virtual Reality in Medical Students’ Education: Scoping Review

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Virtual reality (VR) produces a virtual manifestation of the real world and has been shown to be useful as a digital education modality. As VR encompasses different modalities, tools, and applications, there is a need to explore how VR has been used in medical education.

          Objective

          The objective of this scoping review is to map existing research on the use of VR in undergraduate medical education and to identify areas of future research.

          Methods

          We performed a search of 4 bibliographic databases in December 2020. Data were extracted using a standardized data extraction form. The study was conducted according to the Joanna Briggs Institute methodology for scoping reviews and reported in line with the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews) guidelines.

          Results

          Of the 114 included studies, 69 (60.5%) reported the use of commercially available surgical VR simulators. Other VR modalities included 3D models (15/114, 13.2%) and virtual worlds (20/114, 17.5%), which were mainly used for anatomy education. Most of the VR modalities included were semi-immersive (68/114, 59.6%) and were of high interactivity (79/114, 69.3%). There is limited evidence on the use of more novel VR modalities, such as mobile VR and virtual dissection tables (8/114, 7%), as well as the use of VR for nonsurgical and nonpsychomotor skills training (20/114, 17.5%) or in a group setting (16/114, 14%). Only 2.6% (3/114) of the studies reported the use of conceptual frameworks or theories in the design of VR.

          Conclusions

          Despite the extensive research available on VR in medical education, there continue to be important gaps in the evidence. Future studies should explore the use of VR for the development of nonpsychomotor skills and in areas other than surgery and anatomy.

          International Registered Report Identifier (IRRID)

          RR2-10.1136/bmjopen-2020-046986

          Related collections

          Most cited references179

          • Record: found
          • Abstract: found
          • Article: not found

          PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation

          Scoping reviews, a type of knowledge synthesis, follow a systematic approach to map evidence on a topic and identify main concepts, theories, sources, and knowledge gaps. Although more scoping reviews are being done, their methodological and reporting quality need improvement. This document presents the PRISMA-ScR (Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews) checklist and explanation. The checklist was developed by a 24-member expert panel and 2 research leads following published guidance from the EQUATOR (Enhancing the QUAlity and Transparency Of health Research) Network. The final checklist contains 20 essential reporting items and 2 optional items. The authors provide a rationale and an example of good reporting for each item. The intent of the PRISMA-ScR is to help readers (including researchers, publishers, commissioners, policymakers, health care providers, guideline developers, and patients or consumers) develop a greater understanding of relevant terminology, core concepts, and key items to report for scoping reviews.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Guidance for conducting systematic scoping reviews.

            Reviews of primary research are becoming more common as evidence-based practice gains recognition as the benchmark for care, and the number of, and access to, primary research sources has grown. One of the newer review types is the 'scoping review'. In general, scoping reviews are commonly used for 'reconnaissance' - to clarify working definitions and conceptual boundaries of a topic or field. Scoping reviews are therefore particularly useful when a body of literature has not yet been comprehensively reviewed, or exhibits a complex or heterogeneous nature not amenable to a more precise systematic review of the evidence. While scoping reviews may be conducted to determine the value and probable scope of a full systematic review, they may also be undertaken as exercises in and of themselves to summarize and disseminate research findings, to identify research gaps, and to make recommendations for the future research. This article briefly introduces the reader to scoping reviews, how they are different to systematic reviews, and why they might be conducted. The methodology and guidance for the conduct of systematic scoping reviews outlined below was developed by members of the Joanna Briggs Institute and members of five Joanna Briggs Collaborating Centres.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Virtual reality in the assessment, understanding, and treatment of mental health disorders

              Mental health problems are inseparable from the environment. With virtual reality (VR), computer-generated interactive environments, individuals can repeatedly experience their problematic situations and be taught, via evidence-based psychological treatments, how to overcome difficulties. VR is moving out of specialist laboratories. Our central aim was to describe the potential of VR in mental health, including a consideration of the first 20 years of applications. A systematic review of empirical studies was conducted. In all, 285 studies were identified, with 86 concerning assessment, 45 theory development, and 154 treatment. The main disorders researched were anxiety (n = 192), schizophrenia (n = 44), substance-related disorders (n = 22) and eating disorders (n = 18). There are pioneering early studies, but the methodological quality of studies was generally low. The gaps in meaningful applications to mental health are extensive. The most established finding is that VR exposure-based treatments can reduce anxiety disorders, but there are numerous research and treatment avenues of promise. VR was found to be a much-misused term, often applied to non-interactive and non-immersive technologies. We conclude that VR has the potential to transform the assessment, understanding and treatment of mental health problems. The treatment possibilities will only be realized if – with the user experience at the heart of design – the best immersive VR technology is combined with targeted translational interventions. The capability of VR to simulate reality could greatly increase access to psychological therapies, while treatment outcomes could be enhanced by the technology's ability to create new realities. VR may merit the level of attention given to neuroimaging.
                Bookmark

                Author and article information

                Contributors
                Journal
                JMIR Med Educ
                JMIR Med Educ
                JME
                JMIR Medical Education
                JMIR Publications (Toronto, Canada )
                2369-3762
                Jan-Mar 2022
                2 February 2022
                : 8
                : 1
                : e34860
                Affiliations
                [1 ] Lee Kong Chian School of Medicine, Nanyang Technological University Singapore Singapore Singapore
                [2 ] School of Biological Sciences, Nanyang Technological University Singapore Singapore Singapore
                Author notes
                Corresponding Author: Lorainne Tudor Car lorainne.tudor.car@ 123456ntu.edu.sg
                Author information
                https://orcid.org/0000-0003-4801-7306
                https://orcid.org/0000-0002-5289-6537
                https://orcid.org/0000-0002-7748-7211
                https://orcid.org/0000-0003-3218-5233
                https://orcid.org/0000-0002-0981-5607
                https://orcid.org/0000-0001-8414-7664
                Article
                v8i1e34860
                10.2196/34860
                8851326
                35107421
                204c036a-660c-45a1-a1eb-433f078dc2aa
                ©Haowen Jiang, Sunitha Vimalesvaran, Jeremy King Wang, Kee Boon Lim, Sreenivasulu Reddy Mogali, Lorainne Tudor Car. Originally published in JMIR Medical Education (https://mededu.jmir.org), 02.02.2022.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Medical Education, is properly cited. The complete bibliographic information, a link to the original publication on https://mededu.jmir.org/, as well as this copyright and license information must be included.

                History
                : 11 November 2021
                : 23 December 2021
                : 25 December 2021
                : 30 December 2021
                Categories
                Original Paper
                Original Paper

                virtual reality,medical education,medical students,virtual worlds,digital health education

                Comments

                Comment on this article