15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Schisandra chinensis Stem Ameliorates 3-Nitropropionic Acid-Induced Striatal Toxicity via Activation of the Nrf2 Pathway and Inhibition of the MAPKs and NF-κB Pathways

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The beneficial value of the stems of Schisandra chinensis (SSC) in neurological diseases is unclear. We examined whether SSC aqueous extract (SSCE) alleviates striatal toxicity in a 3-nitropropionic acid (3-NPA)-induced mouse model of Huntington's disease (HD). SSCE (75, 150, or 300 mg/kg/day, p.o.) was given daily before or after 3-NPA treatment. Pre- and onset-treatment with SSCE displayed a significant protective effect and pretreatment was more effective as assessed by neurological scores and survival rate. These effects were related to reductions in mean lesion area, cell death, succinate dehydrogenase activity, microglial activation, and protein expression of inflammatory factors including interleukin (IL)−1β, IL-6, tumor necrosis factor-alpha, inducible nitric oxide synthase, and cyclooxygenase-2 in the striatum after 3-NPA treatment. Pretreatment with SSCE stimulated the nuclear factor erythroid 2-related factor 2 pathway and inhibited phosphorylation of the mitogen-activated protein kinase and nuclear factor-kappa B signaling pathways in the striatum after 3-NPA treatment. The gomisin A and schizandrin components of SSCE significantly reduced the neurological impairment and lethality induced by 3-NPA treatment. These results indicate for the first time that SSCE may effectively prevent 3-NPA-induced striatal toxicity during a wide therapeutic time window through anti-oxidative and anti-inflammatory activities. SSCE has potential value in preventive and therapeutic strategies for HD-like symptoms.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          A call for transparent reporting to optimize the predictive value of preclinical research.

          The US National Institute of Neurological Disorders and Stroke convened major stakeholders in June 2012 to discuss how to improve the methodological reporting of animal studies in grant applications and publications. The main workshop recommendation is that at a minimum studies should report on sample-size estimation, whether and how animals were randomized, whether investigators were blind to the treatment, and the handling of data. We recognize that achieving a meaningful improvement in the quality of reporting will require a concerted effort by investigators, reviewers, funding agencies and journal editors. Requiring better reporting of animal studies will raise awareness of the importance of rigorous study design to accelerate scientific progress.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pharmacology of Schisandra chinensis Bail.: an overview of Russian research and uses in medicine.

            Schisandra chinensis (Turcz.) Bail. is often referred to as an example of a medicinal plant with use in modern Chinese medicine. However, Schisandra chinensis first gained recognition as an adaptogen in the official medicine of the USSR in the early 1960s, principally as a result of the large number of pharmacological and clinical studies carried out by Russian scientists in the preceding two decades. Schizandra has now secured an established position within the medicine of Russia/USSR as evidenced by the inclusion of the drug in recent editions of the National Pharmacopoeia of the USSR and in the State Register of Drugs. Pharmacological studies on animals have shown that Schizandra increases physical working capacity and affords a stress-protective effect against a broad spectrum of harmful factors including heat shock, skin burn, cooling, frostbite, immobilisation, swimming under load in an atmosphere with decreased air pressure, aseptic inflammation, irradiation, and heavy metal intoxication. The phytoadaptogen exerts an effect on the central nervous, sympathetic, endocrine, immune, respiratory, cardiovascular, gastrointestinal systems, on the development of experimental atherosclerosis, on blood sugar and acid-base balance, and on uterus myotonic activity. Studies on isolated organs, tissues, cells and enzymes have revealed that Schizandra preparations exhibit strong antioxidant activities and affect smooth muscles, arachidonic acid release, biosynthesis of leukotriene B(4) in leukocytes, platelet activating factor activity, carbohydrate-phosphorus metabolism, the formation of heat shock protein and polyamines, tissue respiration and oxygen consumption, and the tolerance of an organism to oxygen intoxication. In healthy subjects, Schizandra increases endurance and accuracy of movement, mental performance and working capacity, and generates alterations in the basal levels of nitric oxide and cortisol in blood and saliva with subsequent effects on the blood cells, vessels and CNS. Numerous clinical trials have demonstrated the efficiency of Schizandra in asthenia, neuralgic and psychiatric (neurosis, psychogenic depression, astheno-depressive states, schizophrenia and alcoholism) disorders, in impaired visual function, hypotension and cardiotonic disorders, in epidemic waves of influenza, in chronic sinusitis, otitis, neuritis and otosclerosis, in pneumonia, radioprotection of the fetoplacental system of pregnant women, allergic dermatitis, acute gastrointestinal diseases, gastric hyper- and hypo-secretion, chronic gastritis, stomach and duodenal ulcers, wound healing and trophic ulcers. This review describes the considerable diversity of pharmacological effects of Schisandra chinensis reported in numerous studies carried out in the former USSR and which have been confirmed over more than 40 years of use of the plant as an official medicinal remedy. Such knowledge can be applied in the expansion of the use of Schizandra in the pharmacotherapy of European and other countries as well as for the further discovery of new drugs based on the lignans that constitute the main secondary metabolites of this plant.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Sulforaphane as a Potential Protective Phytochemical against Neurodegenerative Diseases

              A wide variety of acute and chronic neurodegenerative diseases, including ischemic/traumatic brain injury, Alzheimer's disease, and Parkinson's disease, share common characteristics such as oxidative stress, misfolded proteins, excitotoxicity, inflammation, and neuronal loss. As no drugs are available to prevent the progression of these neurological disorders, intervention strategies using phytochemicals have been proposed as an alternative form of treatment. Among phytochemicals, isothiocyanate sulforaphane, derived from the hydrolysis of the glucosinolate glucoraphanin mainly present in Brassica vegetables, has demonstrated neuroprotective effects in several in vitro and in vivo studies. In particular, evidence suggests that sulforaphane beneficial effects could be mainly ascribed to its peculiar ability to activate the Nrf2/ARE pathway. Therefore, sulforaphane appears to be a promising compound with neuroprotective properties that may play an important role in preventing neurodegeneration.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Pharmacol
                Front Pharmacol
                Front. Pharmacol.
                Frontiers in Pharmacology
                Frontiers Media S.A.
                1663-9812
                29 September 2017
                2017
                : 8
                : 673
                Affiliations
                [1] 1Department of Science in Korean Medicine, Graduate School, Kyung Hee University , Seoul, South Korea
                [2] 2Brain Korea 21 Plus Program, Graduate School, Kyung Hee University , Seoul, South Korea
                [3] 3Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University , Seoul, South Korea
                [4] 4Department of Cancer Preventive Material Development, Graduate School, Kyung Hee University , Seoul, South Korea
                [5] 5Department of Neuroscience and Physiology, Dental Research Institute, School of Dentistry, Seoul National University , Seoul, South Korea
                [6] 6Department of Physiology, College of Korean Medicine, Kyung Hee University , Seoul, South Korea
                [7] 7Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University , Seoul, South Korea
                [8] 8Institute of Korean Medicine, College of Korean Medicine, Kyung Hee University , Seoul, South Korea
                Author notes

                Edited by: Francesco Maione, University of Naples Federico II, Italy

                Reviewed by: Heba M. Mahdy, Ain Shams University, Egypt; Elisabetta Caiazzo, University of Naples Federico II, Italy; Vincenzo Brancaleone, University of Basilicata, Italy

                *Correspondence: Ik-Hyun Cho ihcho@ 123456khu.ac.kr

                This article was submitted to Ethnopharmacology, a section of the journal Frontiers in Pharmacology

                †These authors have contributed equally to this work.

                Article
                10.3389/fphar.2017.00673
                5627181
                29033839
                204e500f-8513-4705-9d67-692b9a7529dc
                Copyright © 2017 Kim, Jang, Lee, Choi, Lee, Kim, Jang and Cho.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 22 November 2016
                : 08 September 2017
                Page count
                Figures: 8, Tables: 1, Equations: 0, References: 61, Pages: 17, Words: 11397
                Categories
                Pharmacology
                Original Research

                Pharmacology & Pharmaceutical medicine
                stems of schisandra chinensis,3-nitropropionic acid,nuclear factor erythroid 2-related factor 2,mitogen-activated protein kinases,nuclear factor-kappa b

                Comments

                Comment on this article