Blog
About

0
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Increased Expression of Endothelin-Converting Enzyme-1c Isoform in Response to High Glucose Levels in Endothelial Cells

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Endothelin-1 (ET-1) is both a potent vasoconstrictor and mitogenic factor that has been implicated as a cause of the micro- and macrovascular complications of diabetes mellitus. The pathway by which the high-glucose environment of diabetes mediates increased levels of endothelins has not been completely elucidated but appears to involve endothelin-converting enzyme (ECE-1), which converts inactive big ET-1 to active ET-1 peptide. To determine the effect of high glucose concentrations on the expression of ECE-1, hybrid endothelial cells (EA.hy926) and human umbilical vein endothelial cells (HUVEC) were both grown in various glucose concentrations. There was a 2-fold increase in ECE-1 immunoreactivity in the EA.hy926 cell line growing in medium containing 22.2 versus 5.5 mmol/l glucose after 24 h, which rose to greater than 20-fold after 5 days. Similar results were seen with HUVEC. Bradykinin or NG-nitro- L-arginine methyl ester did not change the effect of high glucose on ECE-1 protein expression. High glucose induced a 72 and 41% increase in total protein kinase C (PKC) activity in both EA.hy926 cells and HUVEC, respectively, and a 39, 49 and 109% elevation in PKC β1, β2 and δ expression, respectively, in EA.hy926 cells. The increase in ECE-1 expression was inhibited in both cell cultures by GF109203X (5 µmol/l), a general PKC inhibitor, while addition of 10 nmol/l phorbol myristic acid to EA.hy926 cells or HUVEC growing on medium containing 5.5 mmol/l glucose increased ECE-1 expression to a level similar to that of cells conditioned in high glucose. Human ECE-1 protein exists in four different isoforms, termed 1a, 1b, 1c and 1d. Northern blot analysis revealed that only ECE-1c isoform mRNA levels increased. Immunohistochemical staining of EA.hy926 cells grown in high glucose concentrations demonstrated an increase in the ECE-1c isoform, which occurred mainly in the plasma membrane. These results showed that the PKC pathway may play an important role in the glucose-mediated induction of ECE-1 expression. The main isoform to increase in response to high glucose was ECE-1c. This enzyme may be one of the factors contributing to the elevated ET-1 peptide levels observed in diabetes.

          Related collections

          Most cited references 20

          • Record: found
          • Abstract: found
          • Article: not found

          Cloning and expression of a cDNA encoding an endothelin receptor.

          Endothelins are a newly described peptide family consisting of three peptides (ET-1, ET-2 and ET-3) which are the most potent vasoconstrictive peptides known. They are crucial in the regulation of vascular smooth muscle tone. The diverse functions of endothelins are thought to be mediated by interaction with many different receptors coupled to the inositol phosphate/calcium ion messenger pathway. However, because of the structural resemblance of the three peptides, the presence and nature of multiple endothelin receptors remain to be elucidated. We report here the cloning of a complementary DNA encoding a bovine endothelin receptor, which has a transmembrane topology similar to that of other G protein-coupled receptors and shows specific binding, with the highest selectivity to ET-1 in animal cells transfected with the cloned cDNA. This receptor messenger RNA is widely distributed in the central nervous system and peripheral tissues, particularly in the heart and lung. Our results support the view that there are other receptor subtypes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cloning of a cDNA encoding a non-isopeptide-selective subtype of the endothelin receptor.

            Endothelin-1 was initially identified as a 21-residue potent vasoconstrictor peptide produced by vascular endothelial cells, but was subsequently found to have many effects on both vascular and non-vascular tissues. The discovery of three isopeptides of the endothelin family, ET-1, ET-2 and ET-3, each possessing a diverse set of pharmacological activities of different potency, suggested the existence of several different endothelin receptor subtypes. Endothelins may elicit biological responses by various signal-transduction mechanisms, including the G protein-coupled activation of phospholipase C and the activation of voltage-dependent Ca2+ channels. Thus, different subtypes of the endothelin receptor may use different signal-transduction mechanisms. Here we report the cloning of a complementary DNA encoding one subtype belonging to the superfamily of G protein-coupled receptors. COS-7 cells transfected with the cDNA express specific and high-affinity binding sites for endothelins, responding to binding by the production of inositol phosphates and a transient increase in the concentration of intracellular free Ca2+. The three endothelin isopeptides are roughly equipotent in displacing 125I-labelled ET-1 binding and causing Ca2+ mobilization. A messenger RNA corresponding to the cDNA is detected in many rat tissues including the brain, kidney and lung but not in vascular smooth muscle cells. These results indicate that this cDNA encodes a 'nonselective' subtype of the receptor which is different from the vascular smooth muscle receptor.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              ECE-1: a membrane-bound metalloprotease that catalyzes the proteolytic activation of big endothelin-1.

              Endothelin-1 (ET-1), a 21-residue vasoactive peptide, is produced in vascular endothelial cells from the 38-residue inactive intermediate big endothelin-1 via a specific cleavage at Trp-21-Val-22. The protease that catalyzes the conversion, endothelin-converting enzyme (ECE), constitutes a potential regulatory site for the production of the active peptide. We report the identification of ECE-1, a novel membrane-bound neutral metalloprotease that is expressed abundantly in endothelial cells in vivo and is structurally related to neutral endopeptidase 24.11 and Kell blood group protein. When transfected into cultured cells that normally secrete only big ET-1, the ECE-1 cDNA conferred the ability to secrete mature ET-1. In transfected cells, ECE-1 processes endogenously synthesized big ET-1 as well as exogenously supplied big ET-1, which interacts with ECE-1 on the cell surface. ECE-1 may provide a target for pharmacological intervention to alter ET-1 production.
                Bookmark

                Author and article information

                Journal
                JVR
                J Vasc Res
                10.1159/issn.1018-1172
                Journal of Vascular Research
                S. Karger AG
                1018-1172
                1423-0135
                2004
                April 2004
                21 April 2004
                : 41
                : 2
                : 131-140
                Affiliations
                aDiabetes Center and Department of Internal Medicine, Hadassah University Hospital, Jerusalem, Israel; bSchool of Biochemistry and Molecular Biology, University of Leeds, Leeds, UK
                Article
                77132 J Vasc Res 2004;41:131–140
                10.1159/000077132
                15010576
                © 2004 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                Page count
                Figures: 9, References: 50, Pages: 10
                Categories
                Research Paper

                Comments

                Comment on this article