1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Heme Flattening Is Sufficient for Signal Transduction in the H-NOX Family

      ,
      Journal of the American Chemical Society
      American Chemical Society (ACS)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The H-NOX family of nitric oxide (NO) sensing proteins has received considerable attention because its members include the mammalian NO sensor, soluble guanylate cyclase. Despite this attention, the mechanism of signal transduction has not been elucidated. Structural studies of bacterial members of the family have revealed that the H-NOX heme cofactor is extremely distorted from planarity. Furthermore, it has been determined that heme distortion is maintained primarily by a conserved proline residue located in the proximal heme pocket. It has been suggested that changes in heme planarity may contribute to signal transduction. Here we demonstrate that heme flattening is, indeed, sufficient for signal transduction in the H-NOX family. Using our previously described H-NOX/diguanylate cyclase functional partners from Shewanella woodyi, we demonstrate that mutation of the conserved proline (P117 in SwH-NOX) to alanine, which results in heme flattening, has the same affect on phosphodiesterase activity as NO binding to wildtype SwH-NOX. This study demonstrates, for the first time, that heme flattening mimics the activated, NO-bound state of H-NOX and suggests that NO binding induces heme flattening as part of the signal transduction mechanism in the H-NOX family.

          Related collections

          Author and article information

          Journal
          Journal of the American Chemical Society
          J. Am. Chem. Soc.
          American Chemical Society (ACS)
          0002-7863
          1520-5126
          January 20 2012
          January 20 2012
          : 134
          : 4
          : 2044-2046
          Article
          10.1021/ja211576b
          22257139
          2057de4a-7bf2-4845-b0bf-0a061ba6fc5b
          © 2012
          History

          Comments

          Comment on this article